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Surveys and questionnaires are frequently used by psychologists, social scientists,

and epidemiologists to collect data about behavior, attitudes, emotions, and so on.

However, when asked about sensitive topics such as their sexual behavior or illegal

activity, some respondents lie or refuse to answer. The randomized response

method was developed to reduce these evasive answer biases by guaranteeing

subject privacy. However, the method has been criticized as being susceptible to

cheaters, that is, respondents who do not answer as directed by the randomizing

device. Here the authors show that by splitting the sample into 2 groups and

assigning each group a different randomization probability, it is possible to detect

whether significant cheating is occurring and to estimate its extent while simulta-

neously protecting the identity of cheaters and those who may have engaged in

sensitive behaviors.

Surveys and questionnaires are standard methods

for collecting data about behavior, attitudes, emo-

tions, and so forth. The basic assumption of any in-

terview or survey technique is that the respondents are

providing honest information. The validity of this as-

sumption is questionable, however, when researchers

ask questions that most would be reluctant to answer

publicly. Examples of such questions are those that

reveal whether the respondent has engaged in an ille-

gal activity, or an activity that is stigmatized by so-

ciety, or the query may pertain to a behavior of which

the respondent is ashamed or about which the respon-

dent feels is simply too personal to confide in some-

one else. Faced with such a question, some individu-

als in a sample will refuse to answer or will lie. Either
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type of evasion introduces a bias into survey data.

Thus, there are severe methodological obstacles to the

use of surveys in studies in which a sensitive behavior

is directly related to the phenomenon of interest.

Researchers have tried to reduce evasive-answer

bias by assuring respondents that their answers will be

anonymous. However, many people are still reluctant

to answer, fearing that at least the people conducting

the survey will know their responses or that the as-

surance of anonymity is not genuine, fears that are

sometimes well founded (Dawes & Smith, 1985, p.

550). Even when researchers are sincere in their offers

of anonymity, they may sometimes be unable to keep

their promises in the face of court action (Adler, 1989,

as cited in Scheers, 1992). As Scheers has suggested,

increasing public awareness of the sharing of infor-

mation between computerized databases may result in

an increase in evasive-answer bias. Indeed, one form

of evasion, not responding to the survey, seems to have

increased in recent years (Goyder, 1989; Groves, 1989).

To overcome this dilemma, Warner (1965, 1971)

developed the randomized response model (RRM). It

is based on the premise that cooperation by respon-

dents should improve if their answers would not re-

veal any information about themselves. In other

words, the RRM aims to reduce evasive-answer bias

by guaranteeing privacy.

How the RRM guarantees privacy is best under-

stood through an example. For this illustration, we use

the form of the RRM used by Dawes and Moore
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(1979). If a team of researchers was trying to model

the spread of the HIV virus among members of the

armed forces, the researchers would need to know

many demographic variables, including some that

would be highly sensitive given the current realities of

military life: for example, the proportion of soldiers

engaging in homosexual behavior.

Suspecting that many participants might refuse to

answer or might lie even with guarantees of confiden-

tiality, the researchers might elect to use an RRM to

gather their information. For the purposes of this ex-

ample, imagine that each participant is given a list of

questions that requires him or her to answer dichoto-

mously (e.g., yes or no, agree or disagree, etc.). An

example of one such question (given to male respon-

dents) might be "Have you ever engaged in unpro-

tected anal intercourse with a member of the same

sex?" Suppose also that all the questions would be

framed so that answering "yes" is admitting to en-

gaging in a sensitive behavior. In addition to the list of

questions, each participant would be given a coin and

instructions on how to use that coin in answering the

questions. The participants would be told to flip the

coin before answering each question and to answer

that question according to the outcome of the coin toss

and the following rule: ' 'If the coin comes up heads,

then answer the question truthfully; if it comes up

tails, then ignore the question altogether and just say

'yes' no matter what you would have answered to the

question."

Consider the responses. An affirmative response

could mean either that the respondent had engaged in

the behavior or simply that he had flipped tails. Even

if a participant's answer is known, his or her actual

behavior could not be deduced from the answer, thus

confidentiality would be assured. Nevertheless,

Dawes and Moore (1979) showed that an investigator

could determine the proportion of the sample that en-

gages in any behavior using the equation IT = 2X - 1,

where IT is the proportion of the population that would

privately admit to having engaged in the behavior and

X is the proportion of affirmative responses given.

They derived this equation in the following way. The

respondents who engaged in the behavior (TT) will

have answered "yes" regardless of the outcome of

the coin toss, and if fair coins are used, half of the

participants who have not engaged in the behavior,

0.5(1 - IT), also will have answered "yes" because

the coin came up tails (Table 1). Therefore, X = TT +

0.5(1 - TT). Algebraic rearrangement yields the equa-

tion arrived at by Dawes and Moore. So in our ex-

Table 1

Types of Respondents and Their Characteristics

Respondent type

Characteristic

Engaged in behavior

Proportion in sample

Response to heads

Response to tails

Honest

yes

Yes

IT

Yes

Yes

Honest

no

No

P
No

Yes

Cheater

Unknown

1
No

No

Note. When there is no cheating, p — 1 - IT.

ample if X. = .55, then IT = . 1. Of all the respondents,

50% answered "yes" because the coin came up tails,

and 5% did so because the coin came up heads and they

answered "yes" truthfully to the sensitive question.

The procedure just described is one of several dif-

ferent forms of the RRM that have been developed to

analyze answers to dichotomous questions. Previous

literature contains several reviews that provide de-

tailed descriptions of these variants (D. T. Campbell

& Joiner, 1973; Chaudhuri & Mukerjee, 1988; Dawes

& Smith, 1985; Scheers, 1992). In addition, variants

of the RRM have been developed that can be used

with quantitative questions that may be phrased,

"How many times have you ...?" (Park & Park,

1987; Pollock & Bek, 1976; Scheers, 1992).

In the decade after their introduction, RRMs gen-

erated considerable scientific interest. In recent years,

however, the use of RRMs has declined somewhat

(Scheers, 1992). It is possible that this is because the

procedure is not as straightforward as direct question-

ing and is perceived as involving additional time and

cost for researchers. This is largely a misperception.

Most of the time and cost is incurred in the initial

study using the RRM. When randomizing devices

(e.g., coins, spinners, etc.) have been acquired and

data analysis procedures have been developed, their

use transfers easily to a variety of questionnaires and

surveys.

A more compelling reason for using RRMs is that

numerous empirical studies have shown that a higher

proportion of respondents acknowledge having en-

gaged in sensitive behaviors when this method is used

than when traditional questionnaires with assurances

of anonymity are used. This finding has been consis-

tent across a variety of RRM variants and across a

wide variety of behaviors including having an abor-

tion (Krotki & Fox, 1974; Schimizu & Bonham,

1978), academic cheating (Scheers & Dayton, 1987,

1988; Stem & Steinhorst, 1984), drug use (Goodstadt

& Gruson, 1975), being arrested (Tracy & Fox, 1981),
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and a variety of other illegal or private behaviors

(Dawes & Moore, 1979; Fiddler & Kleinknecht,

1977; Greenberg, Abul-Ela, Simmons, & Horvitz,

1969; Horvitz, Shah, & Simmons, 1967; Volicer, Ca-

hill, Neuburger & Arntz, 1983; Weissman, Steer, &

Lipton, 1986). Finally, nonresponse rates are lower

when RRMs are used (Scheers, 1992). The results of

all these studies make a compelling case that research-

ers who use traditional methods to ask participants

about sensitive behaviors run the risk of obtaining

biased estimates because of evasive answering.

We are hardly alone in championing the increased

use of RRMs. Kolata (1987) reported a suggestion by

Joel Cohen that the RRM be used to encourage honest

reports of the sexual behaviors that spread HIV (Co-

hen, 1987, noted that this suggestion was made pre-

viously by Fiering & Hooper, 1985). In response to

this report, A. A. Campbell (1987) presented several

reasons why such use of the RRM might be unfea-

sible; some of these reasons have since been ad-

dressed (Golbeck & Molgaard, 1990). One of A. A.

Campbell's concerns that inspired this article was the

argument that the RRM is not immune to cheating and

that respondents especially anxious to avoid being

identified with a sensitive behavior will simply an-

swer "no" regardless of the outcome of the random-

izing device.

Cheating in this sense is distinct from lying. Lying

is answering contrary to fact, but we operationally

define cheating as not answering according to the in-

structions of the RRM. Some cheaters may be liars,

but this is not necessarily the case. In the case of an

extremely homophobic individual who has never en-

gaged in any homosexual behavior, who is answering

the anal sex question from our example, and who has

just flipped tails, accordingly to our rule, the person

should answer "yes" to the question. It is possible

that such an individual might break the rule and an-

swer "no" to avoid even the possibility of anyone

thinking he or she has engaged in homosexual behav-

ior. This would be even more likely if the respondent

does not understand how the RRM guarantees pri-

vacy. Thus, we make no assumption about whether

cheaters have actually engaged in the sensitive behav-

ior or not.

In fact, there is evidence that cheating occurs in

some circumstances (Locander, Sudman, & Bradburn,

1976; Schimizu & Bonham, 1978; Weisman, Moriar-

ity, & Schafer, 1975). One reason to expect cheating

is that the rationale of the RRM is based on statistics.

Statistical literacy is low in the general population,

and some participants may not understand how their

privacy is protected. Other participants might assume

that the randomizing device is not truly random but is

being manipulated in some way by the researchers.

Whatever its cause, cheating frustrates the very object

of using the RRM. This prompted us to develop a

modification to the RRM. This modification enables

researchers to estimate the proportion of a sample

population engaging in a certain behavior and to test

whether a significant proportion of the individuals in

a sample are violating the assumptions of the RRM by

failing to answer as instructed. Furthermore, our

method achieves these aims without revealing which

members of the sample have or have not engaged in

the behavior and without revealing which individuals

are not following directions properly. We believe this

method could prove valuable for assessing the quality

of data obtained by the RRM.

The Model

We consider questions that could be answered with

a "yes" or a "no," with the question framed so that

a "yes" response is acknowledging having engaged

in a sensitive behavior. We also assume the instruc-

tions given above: "If heads, answer truthfully; if

tails, answer 'yes.' "

We conceptually divide the sample population into

three groups. The first two groups consist of those

participants who follow the researchers' instructions

and, when instructed to answer truthfully, answer ei-

ther "yes" (honest yes) or "no" (honest no). The

third group consists of those participants who ignore

the researchers' instructions and answer "no" regard-

less of the outcome of the randomizing device (cheat-

ers). We make no assumption about whether individu-

als in the third group would answer "yes" or "no" if

they were to answer truthfully. There is a fourth pos-

sible type of respondent: one that ignores instructions

and always answers "yes." We assume that these

respondents are so rare that they can safely be ig-

nored. The proportion of honest-yes respondents in

the population is equal to the IT of other RRMs. We

designate the proportions of the honest-no respon-

dents and cheater respondents in the population as |J

and y, respectively (Table 1).

We base our method on splitting the sample group

of N individuals into two groups. Individuals in each

group are asked the same questions with the same

instructions but with different probabilities of getting

the two outcomes from the randomizing device. Using
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two different probabilities allows the development of

a system of equations for estimating 11, p, and 7, as

explained below. The investigator then tallies the

numbers of "yes" and "no" responses in the two

groups.

From these tallies, we can make unbiased estimates

of the proportions of honest-yes respondents (TT), hon-

est-no respondents (|3), and cheaters (y) in the popu-

lation. Let PJ and p2 represent the randomization

probabilities for Groups I and 2, respectively (i.e., the

probability of being instructed to answer "yes") and

consider the probability of a ' 'yes" response. All hon-

est-yes respondents will answer "yes" regardless of

the outcome of the randomization device, and their

frequency in the population is 11 (Table I). Additional

positive responses will come from honest-no respon-

dents who would have been directed by the random-

ization device to answer "yes" (Table I). Their fre-

quency in the population is p, and the probability that

they will answer "yes" is />, for group i, i = I, 2.

Therefore, the probability of a "yes" response in

group i is \j = IT + pfi for z' = 1, 2. If A., is estimated

with the observed frequency of "yes" responses, y,J

NJ, where yt is the number of "yes" responses and /V;

is the number of participants in the ith group, i = I,

2, then the result is a system of two equations with

two unknowns, IT and P. (Because TT + p + y = 1, the

proportion of cheaters equals 1 - TT - p.) Solving

these equations gave the following unbiased maxi-

mum-likelihood estimates of IT, p, and y, which we

denoted by it, p\ and y (when p, ^ p2):

* = (p2y,Wi - Piy2tN2)/(j>2 - Pl), (1)

P = WN2 - y,W,)/(p2 - />,), and (2)

y = 1 - (-fr + P). (3)

If either TT or P is negative or exceeds 1.0 then one or
two of the maximum-likelihood estimates for TT, p,
and -y are equal to 0.0. One must compute three sets of
maximum-likelihood estimates for the three cases, TT
= 0, p = 0, and -y = 0 and choose the set of esti-
mates that yields the largest value for the likelihood
function. (Details of these computations are available
from the authors.) The asymptotic (large-sample)
variances (var) and covariances (cov) of these esti-
mates are as follows:

,„ -. , ,-
COV(TT, P) = -(P! -p2)

.
' and

—

where n, and «2 are the numbers of "no" responses in
the two sample groups.

To determine whether significant cheating was oc-
curring, we developed a likelihood ratio test for the
null hypothesis that there are no cheaters (Ha: y = 0).
The alternative hypothesis is that cheaters were pre-
sent (Hl:y> 0). When the null hypothesis — that there
was no cheating — holds, TT + p = 1, and p is esti-
mated as the smaller of 1 or

2a

where a = -(Nlala2 + N2a2al), b = (N^ + n,a2 +

N2a2 +• n2a,), c = -(n, + «2), a, = 1 -pj, a2 = 1 -

P2, and * denotes the maximum-likelihood estimate of

a variable. With yf = N£ir* + P*p;) and nf = JV( -

y* for ;' = 1, 2, the following test statistic has an

asymptotic chi-square distribution with one degree of

freedom (Kendall & Stuart, 1979):

An alternative to the G2 with the same limiting dis-

tribution is Pearson's chi-square (also with one degree

of freedom):

Either of these two test statistics can be used to detect

cheating.

The ability of these tests to detect cheating when it

is actually present is measured by the power of the

test. The power is defined as the probability of reject-

ing the null hypothesis, HQ, of no cheating when

cheating actually exists (y > 0). For a measure of the

power, we fixed the level of significance at .05, set N1

= N2, and used the noncentral chi-square distribution

(Johnson & Kotz, 1970) to compute the power for two

cases of the randomization probabilities: when pl =

1/4, p2 = 3/4 and when pl = \/3,p2 = 2/3. Because

the power also depends on the unknown parameter, TT,

we acted conservatively and chose the smallest values

of the power for IT in the range 0 to 1 - y. Power
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Figure 1. Power curves. The probability of detecting

cheating as a function of the true frequency of cheating (-y).

Randomization probabilities for Panel A are p, = 1/4 and

p2 = 3/4 and for Panel B arep, = 1/3 andp2 = 2/3. The

level of significance for the null hypothesis of no cheating

equals .05. These results assume equal sample sizes in the

two groups, JVj = N2 = N/2. The different curves represent

different sample sizes N = Nt + N2 as indicated in each
graph. The power curves are minima for all possible fre-

quencies of honest-yes respondents (IT).

curves for a variety of sample sizes, N = Nl + N2, are

presented in Figure 1 as a function of the true fre-

quency of cheating, -y. Increasing the sample size or

choosing randomization probabilities p, and p% that

are further apart increases the ability to detect cheating.

An Example

To give a better idea of how our modification to the

RRM would actually be used, we refer again to our

imaginary team of researchers. If these researchers

wish to know the frequency of various homosexual

behaviors among soldiers in the military, a primary

concern of the researchers is the accuracy of their

data. Because they are aware that they are asking

about sensitive behaviors, they decide to use an RRM

to reduce evasive-answer bias. They are concerned,

however, that some respondents may still decide to

cheat, so they adopt our method to determine whether

significant cheating is occurring. Assume that the re-

searchers have developed their questions and are now

deciding on the sample sizes.

The researchers decide that if the level of cheating

exceeds 10%, they want to be fairly certain that they

detect it. Looking at Figure 1 A, they see that when the

frequency of cheating is 0.10, a sample size of N =

1,000 will result in the detection of cheating over 90%

of the time for randomization probabilities of .25 and

.75. (For more on the issues relating to selecting a

sample size, see Discussion.)

Having chosen a sample size and randomization

probabilities, the researchers now choose a random-

izing device. A variety of ingenious methods using

spinners, containers of colored balls, dice, poker

chips, playing cards, and even the phone book has

been used for randomizing devices (for a review, see

Scheers, 1992). The researchers construct spinners as

shown in Figure 2. The researchers give spinners to

participants in both groups. The rule given to mem-

bers of Group 1 (p, = .75) is ' 'Before answering each

question, spin the arrow. If the arrow stops on an area

Figure 2. A spinner designed to produce two outcomes, A

and B, with pA = .75 and pB = .25.
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marked 'B,' then answer the question truthfully; if it

stops on an area marked 'A,' then ignore the question

altogether and just say 'yes,' no matter what you

would have answered to the question." Participants in

Group 2 (p2 = .25) are given similar instructions with

the actions assigned to areas "A" and "B" reversed.

Table 2 summarizes the results that the hypothetical

team of researchers obtain. The data for this model

were generated by a stochastic simulation of our

method for a pool of 1,000 participants with known

parameters (TT = .037, P = .864, y = 0.099). Sub-

stituting the values in Table 2 into Equations 1-3 yields

the estimates, TT = .035, ^ = .876, and ^y = 0.089.

The model suggests that 8.9% of the participants

are cheating and are not following the rule when an-

swering questions. The model has done quite well,

because the sample actually contains 9.9% cheaters.

Of course, the team of researchers has no way of

knowing this, and they know that some nonzero esti-

mates of cheating can result from sampling error. To

see whether the estimate, y = .089, could have oc-

curred by chance, the researchers calculate the value

of Pearson's chi-square statistic. This calculation is

presented in the Appendix and results in a value of

9.01. The researchers consult a chi-square table (e.g.,

Rohlf & Sokal, 1981) for one degree of freedom and

discover that this value is sufficient to reject the null

hypothesis that there is no cheating (H0: y = 0) at the

5% level of significance.

Discussion

We have presented a modification to the variant of

the RRM developed by Dawes and Moore (1979),

which provides a means for detecting and estimating

the magnitude of cheating. The modification itself,

using two sample groups with different probabilities

of getting heads, has been suggested previously

(Greenberg et al., 1969; Horvitz et al., 1967). Further-

more, after we developed the modification that we

have presented here, we became aware of the work of

Table 2

Responses Generated by Stochastic Simulation

Group Nj p, y, n,

500

500

.75

.25

346

127

154

373

Note. Sample of 1,000 participants from a population consisting
of 3.7% honest-yes respondents. 86.4% honest-no respondents, and
9.9% cheaters. Ni = number of participants; p^ = probability of
being instructed to answer "yes"; y\ and nf — numbers of "yes"
and "no" responses, respectively, in the ith group.

Mangat and Singh (1990), who proposed a two-stage

RRM with different probabilities at each stage. They

showed that when respondents are not completely

truthful, their version of the RRM is more efficient

than Warner's (1965) original formulation. However,

in neither this nor the previously cited studies did the

authors propose the application of this modification to

the problem of detecting and estimating cheating.

To use our method, researchers must develop the

RRM questions, determine how large a sample size is

needed, choose a randomizing device, select the prob-

abilities (pj and p2) for the two randomizing devices,

randomly assign the respondents to groups, adminis-

ter the test, and analyze the data. The sample size

necessary is affected by many considerations, most of

which have nothing to do with the issue of cheating.

If one is interested in behaviors—sensitive or not—

that might only be practiced by a small proportion of

the population, then sample sizes need to be large.

This is affected not only by the frequency of the be-

haviors but on how the question is framed. For ex-

ample, Kinsey, Pomeroy, and Martin (1948) found that

the frequency of homosexual behavior, .37, .10, or .04,

depended on whether the respondent was asked about

having had (a) a homosexual experience at least once in

one's lifetime, (b) only homosexual experiences during

at least one 3-year period between ages 16 and 55, or

(c) exclusive homosexual behavior postadolescence.

The sample size needed to reliably detect cheating

is a function of three factors: the frequency of cheat-

ing, the randomization probabilities assigned to the

two groups, and the desired power of the test. The

latter is something most researchers never consider

when they use statistical tests because the information

is not readily available. We have provided Figure 1,

however, which enables researchers to determine the

power of the test for a variety of sample sizes. As

Figure 1 shows, extremely large sample sizes are

needed to detect very small levels of cheating. In ad-

dition, the closer pl and p2 are to .5, the larger the

sample size needed to detect cheating. By using ex-

treme randomization probabilities, say .10 and .90,

researchers can increase the power of the test for a

given level of cheating and therefore use smaller

sample sizes, but extreme probabilities undermine the

guarantee of anonymity afforded by the RRM. If the

probability of getting a tails is .50, then there is a 50%

chance that a respondent who answers affirmatively is

only following the rule to answer "yes," but as the

probability of a tails drops, the more likely it is that a

"yes" answer means that the respondent actually en-
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gaged in the behavior. Under these circumstances, it

becomes likely that more people will decide to cheat

with the result being that the level of cheating will

actually become a function of the probabilities of the

randomizing devices. We suggest, therefore, for any

given level of cheating to be detected, that researchers

use the largest sample size feasible in order to keep p^

and p2 close to .5.

In many cases, researchers will have no initial idea

about what levels of cheating might occur. In these

situations, researchers should use Figure 1 to choose a

sample size based on the level of cheating they wish

to reliably detect. One might be inclined to say, "I

want to detect any level of cheating no matter how

small," but an examination of Figure 1 shows that

this clearly is not feasible. Even with a sample size of

100,000 and randomization probabilities of p, = .25

andp2 = .75, one would miss detecting a 1% level of

cheating, on average, 10% of the time (Figure 1A).

The inability of our method to detect extremely low

levels of cheating is not as much a limitation as it may

seem. First, low levels of cheating mean that the data

are trustworthy; the main purpose of our method is to

alert researchers to when data should be discarded

because high levels of cheating have occurred. Sec-

ond, we remind readers to consider the alternative:

Not using our method means that researchers will

have no idea of what levels of cheating are occurring

and are thus accepting any and all levels.

Some may see the value of the method we have

proposed when cheating is likely, but will they still

wonder if it is more costly than the traditional RRM

when no cheating exists? Surprisingly, the answer is

no. All versions of the RRM require larger sample

sizes than traditional surveys to achieve the same

level of reliability. However, compared with versions

of the RRM that do not split the sample into two

groups, our version is more efficient. Splitting the

sample in half and using randomization probabilities

that are symmetric around .5 produce an estimate TTO

that has a lower variance than the estimate TT,, which

would be obtained from the traditional method with

an equal number of randomized responses. If relative

efficiency (Kendall & Stuart, 1979) is defined as RE

= var(ir0)/var(TT,), then

RE=1--
z + 2ir + 2(1 - -

where TT is the true population value. Given that pl ^

p2, then RE < 1 for all TT < 1. Thus, we would advo-

cate the use of this procedure whenever one feels that

the use of any RRM is desirable.

What should researchers do if the null hypothesis,

that there is no cheating, is rejected? The best estimate

of the magnitude of cheating is given by the equation

for y (Equation 3). We caution researchers against

trying to use the value of y as a correction factor for

TT. One cannot assume that all cheaters actually en-

gaged in the behavior. No such assumption went into

our model, and neither this method nor any other

method is capable of indicating the true behavior of

cheaters. If *j is significant but small relative to ff, we

suggest reporting both values for -ff and y. If •> is

large, as was the case in our example, the data have

been hopelessly contaminated by cheating and are un-

usable. As undesirable as the latter outcome would be,

it is still preferable to know that sample data are con-

taminated than to draw (and publish) erroneous con-

clusions, which is what researchers implicitly agree to

do when using direct questioning or the RRM without

our modification.
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Appendix

Calculation of Pearson's x2

The formula for Pearson's chi-square is

As stated in the text, y, and n, are the number of

"yes" and "no" responses in the ith group, and *

denotes the maximum-likelihood estimate as a vari-

able, yf = N,{tr* + 3*p,), nf = N, - >?, and IT* =

1 - |J* for / = 1, 2, where Nf is the number of

participants in the ith group. 3* is defined as the

smaller of 1 or

-b + \A2 - 4«c

la

where a = -(Nlala2 + N2a2al), b = (Nlal + nla2 +

N2O2 + "2fll)' C = ~("l + "2)1 al = 1 ~ P l > a2 ~ I ~~

P2. By substituting the values from Table 2 into these

formulas, we calculate the value of chi-square as fol-

lows:

hypothesis of no cheating, there are fewer "yes" re-

sponses than one would expect to get from the ran-

domization device alone even if the behavior were

nonexistent in the population. In this example, if there

were no homosexual behavior and everyone were

honest, we should have gotten 500 "yes" responses

due to random chance. We got only 473 (346 from

Group 1 and 127 from Group 2). If one assumes no

cheating (null hypothesis), then the equations try to

account for the dearth of "yes" responses by setting

IT* < 0. In these cases, the best one can do to maxi-

mize the likelihood of the data under the null hypoth-

esis is to set TT* = 0. This will occur with high prob-

ability when the true frequency of the behavior is low

relative to the level of cheating.

|3* = 0

= Af,[ir* + p*p,]

= 500[0 + (1 X .75)]

= 375

a = -[^,0,02 + N2a2a}]

= - [(500 X .25 X .75) + (500 X .75 X .25)]

= -187.5

b — A^a, + nl

= (500 X .25) + (154 X .75) + (500 X .75)

+ (373 X .25)

= 708.75

c — — (nl + n2)

= -527

3* = -
-b + '

2a

-708.75 + V/708.752-4(-187.5) X (-527)

2(-187.5)

= 1.02

Because this is larger than 1, we set 3* = 1. The

reason for setting 3* = 1 is that 3* > 1 is equivalent

to IT* < 0. This condition occurs when, under the null

= 500[0 + (1

= 125

nf = N, -yf

= 500 - 375

= 125

nf = JV2-y|

= 500-125

= 375

X .25)]

[

= [_

(346 - 375)2 (154 - 125)2] [(127 - 125)2

375

(373 - 375)2

125 125

375

= 9.01
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