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Understanding observed temporal fluctuations
in population abundance is a central goal of
population biology. The hypothesis that complex
fluctuations are a result of deterministic non-
linear effects, as predicted by simple nonlinear
mathematical models, has proved both contro-
versial and elusive to test. Nonlinear theory
suggests many possibilities for complex fluctu-
ations, such as chaotic and strange attractors,
quasi-periodicity and invariant loops, fractal
basins, of attraction, and so on. However,
convincing evidence for the occurrence of such
exotic phenomena in bioloical populations is
meager. There are many reasons for this. Among
them are the difficulties in gathering adequate
and appropriate data; the impracticality, if not
impossibility, of experimental manipulation and
replication of ecological systems; the scarcity of
validated and predictive mathematical models;
inadequate connections between data and
models for purposes of their parameterization
and validation; and the ever present factor of
noise in biological data. Nevertheless, a great
deal of interest surrounds the possibility of using
nonlinear mathematical models to describe,

explain and even predict the dynamics of
biological populations. In particular, there has
been special interest in some of the more exotic
features of nonlinearity such as chaos (claims of
which, however, have been held in skepticism by
many empirical ecologists).

Mathematical models often are used for
discussing theoretical principles in population
dynamics and for drawing conclusions concern-
ing ‘‘qualitative’’ or ‘‘phenomenological’’ prop-
erties of the dynamics. They have been less
successful in providing accurate quantitative
descriptions and predictions that can serve as
testable hypotheses to be rigorously confronted
with data. This is not surprising, given the
difficulties mentioned above and the weaknesses
of many modeling methodologies.

What are the components necessary for a
convincing mathematical model? In our opinion
a modeling exercise in population biology should
contain at least the following basic ingredients.
First, the deterministic ‘‘skeleton’’ of the model
should not be ad hoc, but instead should be
based upon biological principles and, as much as
possible, upon the specific mechanisms judged
important by biologists with regard to the
dynamics of the specific population of interestz Author to whom correspondence should be addressed.
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(under the circumstances of interest). As in all
sciences that are successfully integrated with
mathematical models, an authoritative model
must be built on such a foundation. Of course,
there is always a relentless tradeoff between
model detail and mathematical tractability.
Simplifications must be made by ignoring
mechanisms considered of less importance. By
identifying and isolating the dominant mechan-
isms one can aim to build a simpler model with
fewer parameters. An ecological model with an
over abundance of parameters and state
variables (relative to the amount of data
available) is not statistically testable.

Second, due to the prevalence of noise in
biological data, a stochastic version of the model
must be constructed in order to account for
inevitable deviations from the predictions of the
deterministic model. The nature of the stochas-
ticity and the form that it takes in the model
should again be based upon the biological
circumstances, that is to say upon what is judged
to be the source of the noise in the situation
under study. The stochastic model becomes a
testable hypothesis for the statistical explanation
of data. It provides the means for a strong
connection between a model and data.

Third, parameter estimation (or model ‘‘cali-
bration’’) and model validation from data should
be distinct procedures. Some model parameters
can be estimated separately from the time series
data; some parameters might even be controlled
by an investigator. However, other parameters
must be statistically estimated (with confidence
intervals) from the time series data by some
method, e.g. by maximum likelihood or con-
ditioned least squares methods. However, the
data used for parameter estimation should not be
used to evaluate the accuracy of the model. In a
sense, models that are only parameterized
(calibrated) cannot go wrong, since by design
they ‘‘fit’’ or ‘‘interpolate’’ the data in some
optimal manner. A model that cannot fail
provides little information. This is particularly
serious if the number of estimated parameters far
exceeds the number of data points. Independent
data, i.e. data not used to estimate parameters,
should be utilized in the evaluation of the
model’s descriptive accuracy and predictive
capabilities. This requires reserving some of the

available data (or obtaining new data) for this
purpose. It also involves devising some rigorous
statistical tests to evaluate the parameterized
model against this independent data.

A strong case for a model is made if its
parameterization is validated against indepen-
dent data sets. An even stronger case for the
model is made if its parameterization provides
predictions, perhaps unexpected and unintuitive
predictions, which can be subsequently docu-
mented by means of observations and controlled
experiments.

For nearly a decade the authors have been
collaborating on interdisciplinary projects in
which these modeling principles are applied to
the investigation of nonlinear phenomena in
population biology. A fundamental goal of the
research is to demonstrate that a mathematical
model can be a valuable tool in explaining and
predicting the dynamics of a biological popu-
lation and to do so under carefully controlled
(and replicated) experimental conditions.
Another goal is to document the occurrence of
specific, model predicted nonlinear phenomena
such as chaos, bifurcation sequences, stable and
unstable manifolds, resonances and so on. We
are interested in showing how a mathematical
model can provide previously unavailable expla-
nations for patterns, even for unexpectedly
subtle patterns, in a population’s dynamics.

To carry out these projects we utilize labora-
tory cultures of flour beetles (sp. Tribolium). This
animal provides the necessary ingredients for our
modeling studies. Flour beetles are easy to
culture and manipulate in a controlled labora-
tory setting. Their biology is well understood and
their life cycle is sufficiently complicated that the
dynamical possibilities are rich. Census counts
are accurate and can be taken over many
reproductive cycles in a relatively short period of
time. Although we use this particular animal, our
studies are not designed primarily to further
understanding of flour beetle dynamics. Instead,
the flour beetle is used to accomplish our goals
in studying the role of nonlinearity in population
dynamics.

One of several major projects concerns a
question that has been of interest since the
well-known work of R. M. May and others in the
1970s: will the dynamics of a population undergo
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the sequence of dynamical changes (bifurcations)
predicted by a mathematical model when a
parameter is changed? The capability to predict
the consequences of, for example, environmental
and/or physiological perturbations is clearly of
ecological importance. The ability of mathemati-
cal models to do this in a natural setting is
certainly in doubt if they cannot do so in a highly
controlled laboratory setting. This particular
long term project was designed to demonstrate
the ability of a relatively simple mathematical
model to make such predictions for laboratory
cultures of flour beetles and to document the
predicted dynamics in controlled and replicated
experiments. In its details the project also
includes other interesting questions, not the least
of which is: will a population follow a specific
bifurcation route to chaos and, in particular, can
a biological population exhibit chaotic dynam-
ics? The study utilizes the modeling principles
outlined above and provides what we feel are the
most convincing answers to these questions yet
obtained.

As a first step in this project mathematical
equations were derived for the deterministic
prediction of measurable state variables from
one census time to the next. The state variables
were chosen to be the numbers of larvae L,
pupae P and adult beetles A placed in a 20 g
medium of flour which are counted at two week
intervals (after which they are returned to a fresh
20 g medium of flour). Many species of
Tribolium are cannibalistic (Park et al., 1965)
and this is the case for the species Tribolium
castaneum (Herbst) used in this project. The
model is built on the assumption that the driving
mechanism of the dynamics for this species,
under the experimental conditions of this
project, are the (nonlinear) interactions among
these life cycle stages caused by cannibalism.
Specifically, the three discrete recursion formulas
for the triple (L, P, A) of state variables, together
called the ‘‘LPA model’’, given by the formulas

Lt+1 = bAt exp(−celLt − ceaAt)

Pt+1 = (1− ml)Lt (1)

At+1 =Pt exp(−cpaAt)+ (1− ma )At

include Ricker-type exponential terms derivable
from an assumption that cannibalistic acts result

from random encounters with victims (which is
strongly supported by existing knowledge of the
behavioral characteristics of the beetles).
Stochastic terms are then included in order to
account for random deviations from the life
stage numbers predicted by these deterministic
equations. One ‘‘stochastic LPA model’’ is given
by the formulas

Lt+1 = bAt exp(−celLt − ceaAt)exp(E1t )

Pt+1 = (1− ml )Ltexp(E2t ) (2)

At+1 = [Pt exp(−cpaAt )+ (1− ma )At ]exp(E3t )

which have noise added on the logarithmic scale.
This is appropriate for the high numbers of
individuals typically present in the experimental
cultures and the resulting dominance of environ-
mental stochasticity over demographic stochas-
ticity (Dennis et al., 1991). In this model the
three terms Eit denote normally distributed
random variables (uncorrelated in time) with
mean 0 and a variance/covariance to be deter-
mined as part of the model parameterization.

Parameterization and validation of the models
(1) and (2) were initially performed using
available historical time series data sets. To do
this half the data was used to derive estimates for
the model parameters and the other half was
used for a validation of the resulting parameter-
ized model. The validation procedure involved
detailed statistical analyses of one-step residuals
(normality tests, Q–Q plots, hypotheses tests,
etc.) computed using the parameterized model
prediction from each census triple and the
subsequent census triple. Parameter estimates
(with confidence intervals) and other details are
given in Dennis et al. (1995). This initial step
resulted in a parameterized and validated model
for laboratory cultures of Tribolium castaneum.
[The model (1) was not the first model
investigated. Simpler models, however, failed
statistically to pass validation tests.]

In the next step of this project the asymptotic
dynamics of the parameterized deterministic
LPA model were investigated, analytically and
numerically, and predictions were formulated
concerning the effects of changes in one of the
model parameters, namely the adult death rate
ma. The model, it turns out, predicts a very
particular sequence of bifurcations as ma is
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F. 1. In one experiment ma (the fraction of adults dying per 2 week time unit) was manipulated to the value shown.
The resulting data triples of life-stage numbers are plotted as open circles (after initial transients are eliminated). The
deterministic model (1) predicts stable equilibria for ma =0.04 and 0.73 (shown as a single solid circle) and stable periodic
two-cycles for ma =0.27 and 0.50 (shown as two solid circles).

F. 2. The bifurcation diagram for the LPA model (1) used to designed experiments by Costantino et al. (1997). The
arrows mark where four of the manipulated cultures were placed. The phase plane plots of the resulting data for these
treatments appear in Fig. 4.
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F. 3. The deterministic model (1) predicts four different phase space attractors in the experiment indicated in Fig. 4:
a stable equilibrium when cpa =0.05; an invariant loop when cpa =0.05; a chaotic strange attractor when cpa =0.35; and
a three-cycle when cpa =1.00. These attractors are plotted as dark lines and circles. Open circles show typical orbits of the
stochastic model (2). Model parameters, including the variance/covariance matrix for the stochastic model (2), were
estimated from data by Dennis et al. (1997).

increased from its minimum of 0 to its maximum
of 1: an equilibrium destabilization results in the
appearance of a stable two-cycle (i.e. a ‘‘period
doubling’’ bifurcation occurs), after which there
occurs a restabilization of the equilibrium. Based
on this simple model predicted sequence of
bifurcations, a series of laboratory experiments
were designed and implemented. Replicated
cultures of flour beetles were manipulated so as
to have adult death rates ma corresponding to the
different asymptotic dynamics appearing in the
bifurcation sequence. The experiment also
included unmanipulated controls. That the
beetle population data do indeed exhibit the
predicted dynamics is visually illustrated by the
phase space plots of the data triples (Lt, Pt, At)
in Fig. 1. The success of the model was also
quantified by a repeated model validation using
the new laboratory data (see Costantino et al.,
1995; Dennis et al., 1997).

Bolstered by the success of this preliminary
study, we initiated a long-term experiment whose
protocol was based upon an LPA model

predicted sequence of bifurcations involving
more exotic dynamics, including chaotic and
strange attractors. This sequence occurs in the
model when the adult death rate is held high at
ma =0.96 and cpa is increased (by manipulating
adult recruitment); see Fig. 2. The sequence
begins with the destabilization of an equilibrium
and an ‘‘invariant loop’’ bifurcation to quasi-
periodic oscillations (sometimes called a discrete
Hopf or Naimark/Sacker bifurcation) in which
orbits move on a closed loop in phase space.
With further increases in cpa the predicted
dynamics pass through a complicated array of
invariant loops and ‘‘period locking windows’’
(where the motion around the loop is exactly
periodic) until finally chaotic and strange
attractors appear. For sufficiently large values of
cpa there is predicted a distinctive cycle of period
three. The deterministic LPA model attractors
for four selected values of cpa are shown in the
phase space plots in Fig. 3, together with typical
orbits from the stochastic LPA model (2); these
graphically depict the LPA model predictions
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based upon the parameterization obtained from
the experiments described in Dennis et al. (1997).

Based on the predictions in Fig. 3 new
experiments were designed and carried out in
which replicated flour beetle cultures were
manipulated to have ma =0.96 and adult
recruitment determined by the selected values of
cpa indicated in Figs 2 and 3. The data from these
experiments are shown in Fig. 4, together with
the predicted attractors (note that these attrac-
tors were predicted prior to the experiment and
are not fits to the new data!). Once again the
visual evidence for the occurrence in the data of
the LPA model predicted attractors is striking.
See Costantino et al. (1997), Desharnais et al.
(1997) and Dennis et al. (1998) for details of
these experiments and also experiments at other
values of cpa.

The deterministic LPA model (1) also de-
scribes well the temporal sequence of data points
in phase space (not shown in Fig. 4). In fact, the

model can capture amazing details of the ‘‘data
orbits’’, as the one example shown in Fig. 5
demonstrates. For this particular replicate of the
treatment cpa =0.05 the model predicts quasi-
periodic motion around the invariant loop in
phase space shown in Fig. 4. In Fig. 5 the data
orbit is broken into four pieces. The first and
fourth pieces, corresponding to the beginning
and the end of the experiment, show a temporal
motion around the loop as predicted by the
model (1) [see Fig. 5(a,d)]. In this replicate,
however, a notable perturbation away from the
predicted motion on the loop occurs when a
stochastic event (at t=8 time units, or week 16)
places the data point very near a model predicted
equilibrium. This is shown by the second piece of
the orbit plotted in Fig. 5(b). During this time
interval (from t=8 to 13, i.e. for a period of 10
weeks) the data remains clustered very near this
predicted equilibrium. The model predicts,
however, that the equilibrium is unstable and

F. 4. Data triples of life-stage numbers for the experiments conducted at the four positions shown in Fig. 2 are plotted
as open circles (after initial transients are eliminated). The deterministic model predicts a stable equilibria for cpa =0.00;
an invariant loop for cpa =0.05; a chaotic strange attractor for cpa =0.35; and a period three cycle for cpa =1.00 (shown
as dark lines and circles). It is important to note that the displayed attractors were not obtained from a model
parameterization using the displayed data. They were obtained from a parameterization using independent data that was
available prior to the experiments (see Dennis et al., 1997). Therefore these attractors constitute a model prediction, not
a model ‘‘fit’’.
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F. 5. The model predicted invariant loop and unstable equilibrium (solid circle) for the treatment cpa =0.05 is shown
together with the entire data orbit of one replicate (open circles). The data orbit is shown in four sequential pieces: in (a)
motion around the loop is interrupted by a stochastic event that places the data near the unstable equilibrium at time t=8;
in (b) the data cluster near the unstable equilibrium; in (c) a slow rotational exit from the equilibrium back to the loop
occurs; and in (d) a return to motion around the invariant loop is seen.

that the data orbit should therefore return to the
invariant loop. Moreover, the model predicts
further that this return to the loop should
be rotational (with an approximate angle of
approximately 145° with respect to the equi-
librium). This rotation is clearly seen in the data
in Fig. 5(c). This particular replicate (the other
replicates for this treatment do not show a
stochastic visit near the equilibrium) illustrates
two notable points: (1) the relatively simple LPA
model can describe subtle details of the data and
(2) in the presence of stochasticity and nonlinear-
ity unstable invariant sets must be taken into
account.

Parameter estimates come with confidence
intervals. It is sometimes the case that the model
predicted dynamics, including a stable attractor
like an equilibrium or a periodic cycle, are robust
within these confidence intervals. In this case one
might well conclude that the data time series has
the dynamics predicted by the deterministic
skeleton (with, of course, accompanying noise).

For example, one might say that a particular
data time series is a noisy equilibrium or
two-cycle. However, such dynamic robustness is
often not present for parameterizations that
imply more complicated dynamics such as chaos.
In this case it frequently (if not typically)
happens that parameter values yielding other
types of dynamics and attractors are ‘‘densely
embedded’’ within the confidence interval. (For
example, see the ‘‘periodic locking windows’’ in
Fig. 2.) As parameter values are changed within
the confidence intervals, even by arbitrarily small
perturbations, qualitatively different types of
stable and unstable invariant sets may be
encountered: equilibrium, periodic, chaotic, etc.
There may also occur multiple attracting sets
with complicated fractal or ‘‘riddled’’ basin
boundaries. In such cases it is unreasonable to
assign characteristics of a specific attractor type
(such as chaos) to a specific time series of data.
Instead, a more appropriate conclusion is that
the data lies in a range of model predicted
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dynamic possibilities as found within the
parameter confidence intervals (of which chaos is
one possibility). In this scenario, especially with
the stochastic nature of a data orbit, stable
manifolds of unstable invariant sets are relevant,
since repeated stochastic events may result in the
dominant influence of unstable invariant sets,
rather than stable attractors. Long chaotic
transients (associated with an unstable chaotic
set) in the presence of a model predicted, stable
equilibrium or periodic cycle is one example.

We have described one project in which a
mathematical model was impressively successful
in describing and predicting the dynamics of a
biological population and, as a result, in showing
convincingly that certain nonlinear phenomena
can occur. Some of these experiments are still
ongoing (e.g. the chaotic treatment cpa =0.35)
and are, at the time of writing, over 180 weeks
in length. In addition to this project, the LPA
model with appropriate modifications has been
applied with equal success in projects involving
other nonlinear phenomena.

For example, using a modification of the LPA
model suitable for a periodically fluctuating
habitat of flour, a theoretical explanation of an
unusual ‘‘resonance’’ phenomenon observed by
Jillson (1980) has been obtained (Henson &
Cushing, 1997; Costantino et al., 1998). In
Jillson’s experiment a significant increase in
biomass was obtained by periodically alternating
the flour medium with an average of 20 g rather
than holding the volume constant at 20 g.
Moreover, beyond providing a theoretical
explanation of this phenomenon, the periodic
LPA model makes some (biologically) unex-
pected predictions related to the existence of two
different stable periodic cycles with quite
different characteristics (averages, phases, etc.).
Based upon these model predictions, laboratory
experiments were recently designed and im-
plemented to substantiate the existence of these
two cycles. Not only are both model predicted
cycles clearly found in the resulting data, but
dynamic subtleties in the data correspond
beautifully to model predicted effects due to a
third and unstable (‘‘saddle’’) cycle. A report of
these results is in preparation (Henson et al., in
prep.). Furthermore, the multiple attractors of
the periodic LPA model, together with stochas-

ticity, suggest a hitherto unavailable explanation
of a well-known, stuttered one-step transition
(or ‘‘chicken step’’) which causes a phase shift
in the time series oscillations of beetle popu-
lations. Experiments to test this hypothesis are
underway.

In yet another study, unstable invariant sets
were found to play a crucial role. Cushing et al.
(1998) show how the LPA model (1)–(2) provides
an explanation for transient effects in data orbits
due to stable manifolds of unstable equilibria
(and hence for differences among replicated
cultures).

These studies demonstrate that mathematical
models, even ‘‘simple’’ mathematical models, are
capable of providing accurate descriptions,
explanations and predictions for the dynamics of
biological populations. To further support this
assertion many other investigations are in
progress or being planned. These include studies
of metapopulations and migration, populations
with non-overlapping generations and one-
dimensional maps (with the famous period
doubling route to chaos), and multi-species
competition systems.

The results of our work demonstrate several
issues that have general relevance to nonlinear
population dynamics. Since all ecological sys-
tems are stochastic, the role of nonlinear
dynamical theory must be understood in the
context of stochasticity. Nonlinearity and
stochasticity together have many important
implications. One is that a study of stable
attractors alone might be insufficient to account
for the dynamical possibilities of a population.
Random events can frequently and repeatedly
produce visits near unstable invariant sets, such
as equilibria or cycles, or near their stable
manifolds. The result can be a strong influence,
even a dominance, of unstable sets on the
dynamics of a population. For example, the
exponential expulsions that occur near unstable
sets lead to a kind of sensitivity to initial
conditions that is not related to the deterministic
concept of chaos (Desharnais et al., 1997). As
another example, unstable sets and their stable
manifolds often form the boundaries between
basins of attraction of multiple attractors and
thus small stochastic perturbations near such an
unstable set can result in very different predicted
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asymptotic dynamics. Furthermore, if the basin
boundary is complicated (fractal or riddled) it
may not be reasonable, in a stochastic setting, to
assign a particular deterministic attractor type to
a data orbit. This does not necessarily mean that
the deterministic skeleton of a stochastic model
is uninformative, however, since it will often
exert a strong influence on stochastic model
orbits and thereby provide means for explaining
and predicting observed patterns in data orbits.

In addition to stochasticity, another general
point that should be taken into account with
regard to the effects of nonlinearity is that
parameter estimates for models necessarily come
with confidence intervals. If a particular dynam-
ical property of a validated model is robust
throughout these confidence intervals, then it is
not unreasonable to assert that a data orbit has
this property. However, in some situations this is
not the case and such an assertion becomes
problematic. For example, as pointed out above,
deterministic model chaotic attractors can be
‘‘densely’’ embedded with other attractor types
throughout confidence intervals. In this case it
does not seem reasonable to ask whether a
particular set of data is or is not chaotic. A data
orbit may be greatly influenced by chaotic
invariant sets lying within the parameter
confidence intervals (even when they are
unstable), but they may also be greatly
influenced by other non-chaotic types of
invariant sets (especially in view of stochasticity).

We are excited by the opportunities provided
by nonlinear theory and mathematical modeling
in ecology. A stimulating interplay can occur
between mathematical modeling and biological
experimentation in population biology, an
interplay in which mathematical analysis pro-
vides not only quantitative descriptions and
explanations of observed dynamical phenomena,
but suggests new biological hypotheses and
experiments. However, more strong interdisci-
plinary studies are needed in which mathematical
models survive experimental challenges as

scientific hypotheses. Successful efforts in this
direction will help establish the confidence
necessary to make mathematical modeling a
serious predictive tool in ecology.

The research described in this paper was supported
in part by U. S. National Science Foundation grants
DMS-9625576 and DMS-9616205
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