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Summary

0[ We identify an unstable equilibrium with a two!dimensional stable manifold and a
one!dimensional unstable manifold in a three!state variable "larva\ pupa\ adult# insect
population growth model[
1[ The saddle node forecasts that the time series of some initial numbers of larvae\
pupae and adults are drawn closely to the unstable equilibrium before approaching
the asymptotic stable attractor "a two!cycle#\ while the time series of other initial
points are not[
2[ Using two quantitative indices\ we examine time series from a Tribolium experiment
for evidence of the predicted saddle node[ We conclude that a saddle node accounts
for the transient dynamics in these data and for the di}erences between the transient
behaviour of di}erent replicates of the same experiment[

Key!words] non!linear demographic dynamics\ transient behaviour\ Tribolium[
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unstable manifold "Guckenheimer and Holmes 0872^
Introduction

Drazin 0881#[
In this report we identify and characterize a saddleSaddle nodes are a common occurrence in higher

dimensional dynamical models of ecological systems[ node in a stochastic\ stage!structured model for the
~our beetle Tribolium "Dennis et al[ 0884\ 0886^A familiar example is the unstable coexistence equi!

librium resulting from the crossed isoclines of the Costantino et al[ 0884\ 0886#[ The predicted in~uence
of the unstable equilibrium on the population dynam!LotkaÐVolterra model for interspeci_c competition

"e[g[ Cunningham 0844^ Leslie 0851^ Ricklefs 0889#[ ics provides a working hypothesis to explain both the
di}erences and the similarities observed among theIn that model\ if the co!existence point equilibrium is

unstable\ either species 0 or species 1 will prevail[ time series of replicate cultures] di}erences in popu!
lation trajectories occur because individual culturesHowever\ depending on the initial conditions and:or

stochastic e}ects "Mangel and Ludwig 0866#\ a par! may take unique routes to the stable attractor^ simi!
larities occur because all trajectories lead to the sameticular multispecies trajectory may move toward the

unstable point before turning to one of the stable _xed attractor[
points[ This is the typical motion of trajectories in the
vicinity of a saddle node in general population models

INFLUENCE OF THE SADDLE NODE IN THE
"Lotka 0845^ see Kaplan and Glass 0884\ p[ 124\ for

TIME SERIES DATA
an example of mutual inhibition in lambda bac!
teriophage#[ Such saddle nodes characteristically have The time series records that we present were obtained
a stable manifold "reduced!dimensional set in phase from an experiment conducted by Jillson "0879#[ Four
space within which the node is a stable attractor# and cultures of the ~our beetle Tribolium castaneum
an unstable manifold[ Trajectories that start near or "Herbst# were initiated with 64 small larvae and 29
are stochastically placed near the stable manifold of a adults[ The cultures were placed in 126 mL milk bot!
saddle node will initially move towards the node tles with 19 g of standard media "84) ~our\ 4) dried
before moving away along a hyperbolic orbit towards brewer|s yeast# and kept in an unlighted incubator atÞ 0887 British

Ecological Society its ultimate attractor in a direction determined by the 22>C[ Every 1 weeks the larvae\ pupae and adults were
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188 counted\ and returned to fresh media[ Dead adults Dennis et al[ "0884\ 0886# and Costantino et al[ "0884\
0886#[J[M[ Cushing et al[ were counted and removed[ The cultures were main!

tained for 69 weeks[
The time series plots of larval\ pupal and adult

STATISTICAL METHODSnumbers for two "of the four# replicate cultures appear
in Fig[ 0[ A striking visual feature in the larval and We used the four control cultures to estimate the
pupal time series is the di}erence between the rep! parameters of a discrete\ non!linear stage!structured
licates that occurs during the time interval from t � 4 stochastic model that describes the dynamics of
"week 09# to around t � 19 "week 39#[ During this larvae\ pupae and adults "LPA model# in Tribolium
time period\ larval and pupal numbers in replicate 19 cultures "Dennis et al[ 0884\ 0886#]
remain relatively nonoscillatory and at low levels "see

Lt¦0 � bAt exp "−celLt−ceaAt¦E0t#\ eqn 0aFig[ 0a#[ This is in stark contrast to the larval and
pupal numbers in replicate 02\ as shown in Fig[ 0b\ Pt¦0 � Lt"0−ml# exp "E1t#\ eqn 0b
which show high amplitude oscillations during this

At¦0 � ðPt exp "−cpaAt#¦At"0−ma#Ł exp "E2t#[time interval[ Just prior to t � 19 the larval and pupal
numbers in replicate 19 begin a fairly rapid oscillatory eqn 0c
departure from these {nearly equilibrium| levels and
move towards large amplitude oscillations similar to Here\ Lt is the number of feeding larvae\ Pt is the

number of nonfeeding larvae\ pupae and callowthose in the replicate 02 time series[ We will explain
these dynamical patterns by the presence of a saddle! adults\ and At is the number of mature adults\ at time

t[ The unit of time "1 weeks# is taken to be the feedingnode equilibrium in a model for Tribolium studied in

Þ 0887 British
Ecological Society
Journal of Animal Fig[ 0[ The time series "larval\ pupal and adult numbers# for replicates 19 "left side# and 02 "right side# of the Jillson "0879#

experiment[Ecology\ 56\ 187Ð295



299 larval maturation interval\ so that after one unit of "0879#\ using the methods described in the previous
time a larva either dies\ or survives and pupates[ ThisMoving toward an section\ are
unit of time is also the cumulative time spent as a non!unstable

b � 3=334\ ml � 9=3683\ cea � 9=994673\
feeding larva\ pupa and callow adult[ The quantityequilibrium
b × 9 is the number of larval recruits per adult per unit cel � 9=94730\ and cpa � 9=90942[ eqn 1
of time in the absence of cannibalism[ The fractions ml

The estimate of the rate of adult mortality obtainedand ma are the larval and adult probabilities\ respec!
from counts of live adults at time t and dead adults attively\ of dying from causes other than cannibalism[
time t ¦ 0 is ma � 9=0431[The exponential non!linearities account for the canni!

The skeleton of model "0# with the parameter esti!balism of eggs by both larvae and adults and the
mates "1# can predict the di}erent kinds of dynamicalcannibalism of pupae by adults[ The fractions exp
patterns seen in the data times series of Fig[ 0[ For"−ceaAt# and exp "−celLt# are the probabilities that an
example\ the two di}erent initial conditions L9 � 067\egg is not eaten in the presence of At adults and Lt
P9 � 3\ A9 � 4 and L9 � 64\ P9 � 9\ A9 � 29 resultlarvae[ The fraction exp "−cpaAt# is the survival prob!
in the model time series shown in Fig[ 1[ The _rstability of a pupa in the presence of At adults[ The
set of initial conditions result in times series thatterms E0t\ E1t and E2t are random noise variables and
approach and linger near the unstable model equi!have a variance!covariance matrix denoted by S[ The
libriumnoise variables represent the unpredictable departures

of the observations from the deterministic skeleton L� � 29=5\ P� � 04=8\ A� � 46=1 eqn 2
due to environmental and other causes[ The deter!

before moving away to the stable asymptotic attrac!ministic skeleton "Tong 0889# of the model is identi_ed
tor\ which in this case is a cycle of period two "Fig[ 1a#[by E0t\ E1t and E2t equal zero in "0#[ Dennis et al[
This pattern is quite similar to that observed in the"0884# provide more discussion about the biological
experimental time series in Fig[ 0a[ The second set ofbasis of the model[
initial conditions\ on the other hand\ result in timeThe model "0# was _tted to combined data from all
series that move more directly to the two!cycle[ Thisfour cultures\ resulting in a single set of parameter
model time series is similar to that in the experimentalestimates[ The parameter ma was estimated directly
time series in Fig[ 0b[ Our explanation of the patternsfrom counts of live adults at time t and dead adults at
in the time series appearing in Figs 0 and 1 involves antime t ¦ 0 "binomial distribution# in the four cultures[
unstable equilibrium that possess a stable manifold\ aWe estimated the parameters b\ ml\ cea\ cel\ and cpa by
so!called {saddle node[|means of conditional least squares "CLS# estimation

"Klimko and Nelson 0867#[ This amounts to min!
imizing the sum of squared one!time!step prediction

A GRAPHICAL STUDY OF THE SADDLE NODEerrors for each state variable[ Suppose lit\ pit and ait

represent the observed values of the state variables in In order to best understand model solutions near the
the ith culture at time t "i � 0\ 1\ 2\ 3^ t � 9\ 0\ [ [ [ \ q#[ unstable equilibrium "2#\ one must consider the paths
The conditional sums of squares for the state variables followed by the triplets "Lt\ Pt\ At# in three!dimen!
are as follows] sional Euclidean {phase| space near the triple "L�\ P�\

A�#[ The geometry of these paths\ or {orbits\| can
s0"b\ cel\ cea# � s

3

i�0

s
q−0

t�9

ðli"t¦0#−bait exp "−cellit−ceaait#Ł1\ be determined from the linearization of the model
equations "0# at the equilibrium "2#\ or more speci_!

s1"ml# � s
3

i�0

s
q−0

t�9

ðpi"t¦0#−"0−ml#litŁ1\ cally by the eigenvalues and eigenvectors of the Jaco!
bian of the right hand sides of "0# evaluated at the
equilibrium point "2# "see Theorems 0=3[0 and 0=3[1 ofs2"cpa# � s

3

i�0

s
q−0

t�9

"ai"t¦0#

Guckenheimer and Holmes 0872#[ These eigenvalues
and their respective eigenvectors are−ðpit exp "−cpaait#¦"0−ma#aitŁ#1[

The functions s0\ s1 and s2 were minimized for the l0 � −0=65\ l1 � −9=96\ l2 � 9=79\ eqn 3a
parameter estimates using the NelderÐMead simplex

v0 � ð0=99\ −9=29\ 9=95Ł\ v1 � ð−9=03\ 0=99\ −9=55Ł\algorithm "Press et al[ 0881#[ CLS are known to have
desirable statistical properties and be robust to many v2 � ð9=03\ 9=98\ 0=99Ł[ eqn 3b
types of probability structures for describing the

Because there are eigenvalues with magnitudes lessresidual errors[
than and greater than one\ the equilibrium "2# of the

Results
LPA model "0# is called a saddle node "Fig[ 2#[ We
denote by S the plane that passes through the equi!

PARAMETER ESTIMATES PREDICT SADDLE
librium "2# and is parallel to the two eigenvectors v1Þ 0887 British NODE BEHAVIOUR
and v2 corresponding to the eigenvalues of magnitudeEcological Society
less than one[ We denote by U the straight line thatThe conditional least squares parameter estimatesJournal of Animal

Ecology\ 56\ 187Ð295 obtained from the four control cultures of Jillson passes through the equilibrium in the direction of the
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J[M[ Cushing et al[

Fig[ 1[ The time series of the larvae\ pupae and adult numbers of two deterministic orbits computed from the LPA model "0#[
The time series in "a# was started with the values L � 067\ P � 3\ A � 4 while the time series in "b# was started with the values
L � 64\ P � 9\ and A � 29[ Both simulations were run for 25 time steps[ The solid line indicates equilibrium levels[

eigenvector v0\ whose eigenvalue has magnitude librium point parallel to this manifold[ In a neigh!
bourhood of the equilibrium point the stable manifoldgreater than one[ The saddle node "equation 2# has a

two!dimensional stable manifold that is tangent to surface is approximated by the plane S[ Eventually\
the orbit moves away from the equilibrium point inthe plane S at the equilibrium and a one!dimensional

unstable manifold that is tangent to the line U at the the direction of the unstable manifold\ which is
approximately the direction of the line U[ Near theequilibrium[ Orbits that start on the stable manifold

will tend to the saddle node "2#[ Other orbits will move equilibrium\ the {~y by| displayed by the orbit is simi!
lar to a hyperbola with the stable manifold andaway in a direction approximately parallel to the line

U[ unstable manifold as asymptotes[ Furthermore\
because l0 is less than −0\ the {~y by| orbit is oscil!In the case studied here the attractor of all positive

orbits "except those on the stable manifold of the latory "with period two# in the direction of the line
U[ Therefore\ such an orbit oscillates alternativelysaddle!node equilibrium# turns out to be a two!cycle[

In particular\ the coordinates for the two!cycle are "L0\ between hyperbolas above and below the stable mani!
fold "Fig[ 2#[P0\ A0# � "9\ 027=3\ 008=9# and "L1\ P1\ A1# � "154=6\ 9\

039=2#[ The route that a particular orbit takes during
its approach to this two!cycle can be in~uenced by the

Þ 0887 British TWO QUANTITATIVE INDICES
saddle node in the following way "Fig[ 2#[ If the orbitEcological Society
starts\ or is stochastically placed\ near the two dimen! The simplest and most straightforward way to mea!Journal of Animal

Ecology\ 56\ 187Ð295 sional stable manifold\ it will move toward the equi! sure the in~uence of a saddle node on an orbit is
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Moving toward an
unstable
equilibrium

Fig[ 2[ The linear approximations S and U of a two!dimensional stable manifold and a one!dimensional unstable manifold of
a saddle node are shown[ This is the con_guration that occurs in the LPA model applied to the Jillson "0879# data set[ The
path of an orbit that begins near the stable manifold moves towards the saddle node equilibrium along this manifold\ oscillating
above and below it\ before moving away from the saddle approximately in the direction of U[ At time t\ ut is the angle between
the unstable eigenvector and the line segment determined by two consecutive points on the orbit at times t and t ¦ 0[

to calculate the "Euclidean# distance dt between each where v00\ v01 and v02 are the components of the eigen!
vector v0 and xt\ yt and zt are the components of theorbital point "Lt\ Pt\ At# and the saddle node "L�\ P�\

A�#[ This distance is given by the formula orbital direction vector between time t and t ¦ 0\ i[e[

v0 � ðv00\ v01\ v02Ł\dt � z"Lt−L�#1¦"Pt−P�#1¦"At−A�#1[

An orbit in~uenced by the saddle will show decreasing "xt\ yt\ zt# � "Lt¦0 − Lt\ Pt¦0 − Pt\ At¦0 − At#[
distances dt during the time interval that the orbit

If sin ut is small then the orbit is moving nearly in theapproaches the saddle node\ followed later in time by
direction of the line U[ This occurs along the orbit atincreasing distances as the orbit moves away from the
those times when the orbit is moving away from thesaddle[
saddle[Another index is based upon the geometry of the

On the other hand\ during those times when thesaddle node and its stable and unstable manifolds near
orbit is approaching the saddle node\ roughly parallelthe node[ This geometry is determined\ at least in a
to the stable manifold and therefore roughly parallelneighbourhood of the saddle\ by the eigenvectors and
to the plane spanned by the eigenvectors v1 and v2\ theeigenvalues of the linearized model as discussed above[
value of sin ut will be determined "approximately#For example\ to quantify the characteristics of the
by the geometric con_guration of this plane and thehyperbolic {~y by| path of an orbit in~uenced by the
unstable eigenvector v0[ More speci_cally\ the motionsaddle node\ the angle ut between the unstable eigen!
of the orbit in the direction of the eigenvector cor!vector v0 and the direction determined by two suc!
responding to the eigenvalue of least magnitude "say\cessive orbit points can be computed "see Fig[ 2#[ In
l1# is the fastest and therefore one can expect thatthis way we can quantify the geometric fact that the
the direction of approach to the saddle node will beorbit leaves the vicinity of the saddle node in a direc!
dominated by the eigenvector v2 corresponding to thetion roughly parallel to the line U tangent to the
stable eigenvalue of largest magnitude "l2#[ Thisunstable manifold[ To avoid complications con!
implies that the value of sin ut during the approach tocerning acute angles or their supplements we can
the saddle node is determined primarily by the angleinstead compute sin ut[ This is done using the formula
between the vectors v0 and v2 "although its exact values

sin ut � depend on the particular orbital path taken#[ If the
Þ 0887 British

angle between the unstable direction v0 and the stableEcological Society
direction v2 is relatively large\ for example\ near 89>\Journal of Animal X"v01zt−v02yt#1¦"v02xt−v00zt#1¦"v00yt−v01xt#1

"v1
00¦v1

01¦v1
02#"x1

t ¦y1
t ¦z1

t #Ecology\ 56\ 187Ð295 then there will be a noticeable di}erence between the



292 value of sin ut during the approach to the saddle node SADDLE NODE HYPOTHESIS AS AN

EXPLANATION OF THE DATAJ[M[ Cushing et al[ and that during the exit from the saddle node[ This is
the case for the LPA model "0# with parameter values
"1#\ for which the eigenvalues and eigenvectors are To quantify the visual observations apparent in the

plots of the experimental data in Fig[ 0\ the indices dtgiven by "3#[
When used together the two quanti_ers dt and sin and sin ut for both replicates were computed and are

presented in Fig[ 4[ The predicted patterns for theut can produce striking graphical evidence of the
in~uence of a saddle node in either model generated presence of a saddle are seen to occur in the plots for

replicate 19 "Fig[ 4a#\ but not in those for replicate 02orbits or in experimental data[ As an illustration\ plots
of dt and sin ut are shown in Fig[ 3 for the two model "Fig[ 4b#[ More speci_cally\ in Fig[ 4a\ which contains

the plots for replicate 19\ dt is seen to decrease for antime series presented in Fig[ 1[ For the model time
series that is markedly in~uenced by the saddle node extended period of time\ starting at t � 4 "week 09#\

during which sin ut remains on the whole at high"namely\ those appearing in Fig[ 1a#\ when dt is
decreasing and the time series is moving nearer the values[ Then just prior to t � 19 "week 39# the distance

dt begins to increase\ at which time sin ut begins aunstable equilibrium one _nds that the values of sin
ut are largest[ When dt is increasing and the time series precipitous decline from nearly 0 to nearly 9[ Finally\

the value of sin ut remains relatively low near the endis moving away from the equilibrium one _nds that
the values of sin ut are smallest[ The graphs of these of the time series as the data approaches the two!

cycle[ These are the model predicted patterns of antwo quantities for any time series that are strongly
in~uenced by the saddle node will rise and fall roughly orbit experiencing a close ~y by of a saddle node[

From Fig[ 4b one can see\ on the other hand\ thatout of phase in this way "Fig[ 3a#\ while for other time
series this pattern will be absent "Fig[ 3b#[ these patterns are not present in the dt and sin ut plots

Þ 0887 British Fig[ 3[ Graphs of the Euclidean distance dt to the saddle and sin ut for "a# the deterministic time series in Fig[ 1a which is
Ecological Society in~uenced by the saddle node\ and "b# the deterministic time series in Fig[ 1b which is leaving the saddle equilibrium[ The
Journal of Animal graph of dt is denoted by the solid circles and refers to the left hand vertical scale[ The graph of sin ut is denoted by the open

circles and refers to the right!hand vertical scale[Ecology\ 56\ 187Ð295
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Fig[ 4[ Graphs of the indices dt and sin ut for the Jillson replicates sketched in Fig[ 0] "a# Replicate 19^ "b# Replicate 02[ The
index dt is denoted by the solid circles and sin ut by the open circles[

for replicate 02[ "Notice\ however\ the low values of sin was begun at population levels near the stable mani!
fold[ This is\ in fact\ corroborated by replicate 02\ut near the end of the time series[ This is commensurate

with the fact that the population is approaching the which also shows the patterns for a saddle ~y by
during the interval t � 9 to t � 5[model!predicted two!cycle and therefore provides

further validation of the LPA model[# We conclude that the time series of the two rep!
licates show signi_cantly di}erent paths to the model!In replicate 19 we have focused on the {~y by| of

the saddle node during the extended time interval from predicted two!cycle attractor and that the di}erence
is due to the in~uence of an unstable saddle nodet � 4Ð19[ It is interesting to note\ however\ that the

indices dt and sin ut suggest that another ~y by of the equilibrium[
saddle occurred during the early time interval from
t � 9Ð4[ In Fig[ 4a the plot of dt is seen to decrease to

Discussion
a very low value before increasing to a maximum at
t � 4[ Furthermore\ the corresponding plot of sin ut For the deterministic LPA model\ only those time

series whose orbits pass near the stable manifold willshows a drop from a very high value to low values
during the move away from the saddle at the end of be strongly in~uenced by the saddle node^ further!

more\ once the population has reached the stablethe interval[ Thus\ once again\ the predicted patterns
characteristic of a saddle ~y by occurs] the time series attractor it will stay there forever[ This is not true for

stochastic LPA model time series nor for experimentaldata of replicate 19 exhibit two passes near the model
predicted saddle node[ The _rst ~y by occurs during observations[ Data obtained from experiments have a

stochastic component[ This stochasticity can cause athe interval from t � 9 to t � 4[ However\ at time step
t � 4 a stochastic perturbation places the data near time series that would not otherwise pass near the

Þ 0887 British
the stable manifold and a second ~y by occurs during stable manifold to land\ at some point in time\ nearEcological Society
the interval t � 4 to t � 19[ This interpretation of the the stable manifold and to come as a result under theJournal of Animal

Ecology\ 56\ 187Ð295 replicate 19 data implies that the Jillson experiment in~uence of the saddle node[ This might even reoccur



294 on several occasions in a time series of data\ and dynamical systems "Guckenheimer + Holmes 0872^
Drazin 0881#[ The quantities we used to provide sim!J[M[ Cushing et al[ several {~y by|s of the saddle node would then be

present in the data[ The stochastic component in ple descriptions of the geometry of trajectories near
saddle nodes can "with only slight modi_cations forexperimental data can account "and\ we assert\ does

account# for di}erent transient behaviour of time ser! the dimensions of the model and the stable manifold#
be used to study the in~uence of unstable equilibriaies in identically replicated experiments[

It has recently been argued that simple deterministic in other data[ Our study suggests that stable manifolds
of unstable equilibria might play a signi_cant rolemodels of one species can have very long transient

dynamics[ Indeed\ the transient behaviour in some in explaining dynamical patterns observed in other
ecological systems[models is so long that a description of the asymptotic

dynamics might not be useful "Hastings + Higgins
0883#[ The presence of stochastic forces may alter
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