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 Summary

 1. We experimentally set adult mortality rates, Ma, in laboratory cultures of the flour

 beetle Tribolium at values predicted by a biologically based, nonlinear mathematical
 model to place the cultures in regions of different asymptotic dynamics.

 2. Analyses of time-series residuals indicated that the stochastic stage-structured
 model described the data quite well. Using the model and maximum-likelihood par-
 ameter estimates, stability boundaries and bifurcation diagrams were calculated for
 two genetic strains.

 3. The predicted transitions in dynamics were observed in the experimental cultures.

 The parameter estimates placed the control and /a = 0-04 treatments in the region of
 stable equilibria. As adult mortality was increased, there was a transition in the
 dynamics. At / = 0.27 and 0-50 the populations were located in the two-cycle region.
 With Ma = 0-73 one genetic strain was close to a two-cycle boundary while the other

 strain underwent another transition and was in a region of equilibrium. In the
 Ma = 0-96 treatment both strains were close to the boundary at which a bifurcation to

 aperiodicities occurs; one strain was just outside this boundary, the other just inside
 the boundary.

 4. The rigorous statistical verification of the predicted shifts in dynamical behaviour

 provides convincing evidence for the relevance of nonlinear mathematics in population
 biology.

 Key-words: nonlinear population dynamics, transitions in dynamic behaviour,
 Tribolium.
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 Introduction

 Nonlinear demographic dynamics has focused debate
 about the nature of population fluctuations directly
 on theoretical phenomena such as stable and unstable
 equilibria, periodic and aperiodic cycles, and chaos.
 Much excitement and controversy surrounds these
 novel dynamic behaviours (May 1974, 1986, 1987;
 Strong 1986a; Berryman & Millstein 1989; Kareiva
 1989; Poole 1989a,b; Bartlett 1990; Berryman 1991;
 Hassell, Comins & May 1991; Turchin & Taylor 1992;
 Turchin 1993). Indeed, the prospect of chaos in popu-
 lation dynamics has the attention of ecologists world-
 wide (Godfray & Blythe 1990; Olsen & Schaffer 1990;
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 Costantino & Desharnais 1991; Logan & Hain 1991;
 Tilman & Wedin 1991; Logan & Allen 1992; Tong &
 Smith 1992; Ascioti et al. 1993; Godfray & Grenfell
 1993; Hanski et al. 1993; Hastings et al. 1993; Gras-
 man & van Straten 1994; Renshaw 1994; Wilson et al.

 1994; Ellner & Turchin 1995; Hanski & Korpimaki
 1995; Kareiva 1995; Scheuring & Janosi 1996). Never-
 theless, empirical evidence of nonlinear phenomena is
 scarce. There is a need for new experiments.

 Our approach to rigorous testing of nonlinear
 population theory is to connect mathematical models

 with empirical data by means of statistical methods
 for nonlinear time series. We begin by deriving a bio-

 logically based demographic model. The math-
 ematical analyses identify regions in parameter space
 corresponding to stable equilibria, periodic cycles,
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 aperiodic motion around invariant loops, and chaos.
 The statistical analyses, based on a stochastic version
 of the demographic model, provide procedures for
 parameter estimation, hypothesis testing and model
 evaluation. The model, fitted to existing data, provides

 critical predictions for testing by means of manipu-
 lative experiments. The mathematics, biology and
 statistical analyses are thoroughly integrated.

 In this paper, we report results and analyses of an
 experiment designed to test predictions of a nonlinear,

 stage-structured population model. The experimental
 system consists of laboratory populations of flour
 beetles (Tribolium sp.). The model is a system of three

 difference equations with nonlinear feedback terms
 reflecting cannibalistic interactions of the major life
 stages. The predictions are that striking shifts (bifur-

 cations) in dynamical behaviour should occur, from
 stable point equilibria, to stable limit cycles, to aperi-
 odic cycles, in response to changes in the rate of adult-

 stage mortality. In the experiment, we manipulated
 adult mortality directly by removing or adding adults

 in replicate cultures, in order to observe the resulting

 population dynamics under a wide range of mortality
 rate values. In extensive statistical analyses, we fitted

 the model to the experimental data and conducted a
 thorough evaluation of the model's predictions. A
 brief announcement of our work was given in Costan-

 tino et al. (1995); here we offer a complete description
 of our experiment, data and analyses. The rami-
 fications of the study, particularly in relation to chaos

 theory in ecology, are discussed in detail. The results,
 we believe, should strongly encourage the study of
 nonlinear dynamics in other population systems.

 Study design

 MATHEMATICAL MODEL

 The mathematical model links larval, pupal, and adult
 numbers at time t + 1 to the numbers in those stages
 at time t. The deterministic portion of the model,
 termed the 'skeleton' by Tong (1990), is a system of
 three difference equations:

 Lt+ 1 = b A exp (-CelLt- Cea At), eqn 1

 Pt+ I = Lt (1 -/), eqn2 eqn 2

 At+, = P,exp(-cpaAt) + At(1 - a) eqn3

 Here Lt is the number of feeding larvae (referred to as

 the L-stage), Pt is the number of large larvae, non-
 feeding larvae (prepupation), pupae and callow adults
 (called the P-stage), and At is the number of sexually
 mature adults (A-stage animals), at time t. The unit
 of time is 2 weeks and is, approximately, the average
 amount of time spent in the feeding larval stage under

 our experimental conditions. The time unit is also
 approximately the average amount of time spent in
 the P-stage. The quantity b > 0 is the number of larval

 recruits per adult per unit of time in the absence of
 cannibalism. The fractions pl and A, are the larval and

 adult probabilities of mortality in one time unit. The

 exponential nonlinearities in the model account for
 the cannibalism of eggs by both larvae and adults and

 the cannibalism of pupae by adults. The fractions
 exp(-ce, Lt) and exp(-c,a At) are the probabilities that
 an egg is not eaten in the presence of L, larvae and At
 adults in one time unit. The fraction exp(-cpa At) is the

 survival probability of a pupa in the presence of At
 adults during one time unit.

 Some basic dynamic properties of the LPA model
 (equations 1-3) have been established. It has been
 proved that all orbits are bounded (Cushing & Yicang
 1994; Kuang & Cushing 1995). Uniform persistence
 of the total population occurs for inherent net repro-
 ductive numbers greater than one, Ro = b /l/(l-
 /a) > 1, and global extinction occurs if Ro < 1 (Cush-
 ing 1995). The uniqueness of a positive equilibrium
 for Ro > 1 has been proved and its local stability near
 the bifurcation point at Ro = 1 has been established
 (Cushing 1995). Some limited global equilibrium stab-
 ility results have also been obtained (Cushing &
 Yicang 1994; Kuang & Cushing 1995).

 The full model fitted to data was a stochastic model.

 The variability in the data was represented by multi-
 variate noise added on a logarithmic scale:

 Lt+l = b At exp(-cel Lt-cea At + El),

 Pt+, = L, (1 - y) exp(E21),

 At+1 = [Pt exp(-cpa At) + At (1 - A)] exp(E3t)

 eqn 4

 eqn 5

 eqn 6

 Here Elt, E2t, and E3t are random noise variables
 assumed to have a joint multivariate normal dis-
 tribution with a mean vector of zeros and a variance-

 covariance matrix denoted by S. The noise variables
 represent the unpredictable departures of the obser-
 vations from the skeleton (equations 1-3) due to
 environmental and other causes. Additive noise on

 the logarithmic scale is a model of stochastic forces
 which are manifested at all levels of population abun-
 dance (see Dennis et al. 1995); such stochastic forces
 are frequently termed environmental variability. The

 type of stochasticity known as demographic varia-
 bility (variation in birth and death events among indi-
 viduals, evident only at very low abundances) was not

 explicitly included in the model. The noise variables
 were assumed correlated with each other within a time

 unit (as quantified by the elements in the matrix S)
 but uncorrelated through time. These stochastic mod-
 elling assumptions were evaluated with time-series
 diagnostic methods (see Statistical methods).

 Note that the log-scale noise can produce a value
 of Pt + 1 that is greater than Lt. For the P-stage recruits

 to exceed the supply of potential recruits in the L-
 stage seems, at first glance, to be unrealistic. In fact,
 such an event is quite possible in real cultures. Stoch-
 astic variation in developmental rates allows some
 eggs present at time t and some small larvae present
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 at time t- 1 to be categorized as P-stage individuals at
 time t + 1. The noise is a realistic model of the inevi-

 table departures by some population members from
 the rigid 2-week stage passage times assumed in the
 deterministic model. Note also that a term for P-stage
 mortality from causes other than cannibalism is not

 included. We have found that including the term in
 statistical estimation procedures results in vanishingly

 small parameter estimates of negligible consequence
 to the population dynamics and have therefore omit-
 ted the term from the model.

 The nonlinear map represented by the model skel-
 eton is preserved in the stochastic model on the log-
 arithmic scale. The conditional expected values of In
 L, +, In P, + , and In A, + given values of Lt, Pt, and
 At are:

 E(ln Lt+ I Lt = I,, P = Pt, At = a) =

 ln[b a, exp(-c, 1,- Cea at)], eqn 7

 E(ln Pt, + L, = It, Pt = p,, A = at) =

 ln[/, (1 -y,)], eqn 8

 E(ln A,t+ L, = , Pt = p,, A, =

 at) = ln[pt exp(-cp, at) + a, (I -u)]. eqn 9

 Thus, the one-step conditional expected values retain
 the essential dynamical properties of the deterministic

 portion. Because the noise is additive on the log-
 arithmic scale, departures of observed values of In
 Lt+ 1, In P,+ l, and In At+ from their one-step
 expected values (equations 7-9) constituted the
 'residuals' used for evaluating the fit of the model to
 data (see Statistical methods).

 The stochastic model provided an explicit like-
 lihood function for connecting data with model par-
 ameters. The likelihood function was the basis for

 most of the statistical analyses we performed, includ-

 ing point estimation and confidence intervals for par-

 ameters. The likelihood function for one population
 is a product of probability density functions (PDFs)
 for multivariate normal distributions:

 q - I

 L(O, )= H p(w,, dww).
 t=0

 eqn 10

 q-1

 ln L(O, S) = l n p(w,+ 1 w,).
 t=o

 eqn 11

 The log-likelihood used for a complete data set rep-
 resenting multiple populations was the sum of the log-

 likelihoods for individual populations.
 In a previous study (Dennis et al. 1995), we used

 the log-likelihood function (equation II) to fit the
 model to an existing data set. Maximum likelihood
 (ML) estimates of model parameters were calculated
 by Dennis et al. (1995) for flour beetle data described
 by Desharnais & Costantino (1980). The ML esti-
 mates corresponded to a region of stable two-cycles
 for the model skeleton (Fig. 1, solid circle).

 Intriguing predictions emerged from the analyses.
 The top portion of Fig. 1 portrays a slice of parameter

 space in which all parameters besides c,,, and y, have
 been held constant at their ML values. Shifts in

 dynamical behaviour should result if the adult death

 rate, Ua,, were increased through a range of values
 starting near zero and ending near one. The dashed
 line in Fig. 1 at the level of the ML estimate of Cp,
 shows which stability boundaries would be crossed by

 increasing a,, and a bifurcation diagram for the L-
 stage (Fig. 1, bottom) depicts the corresponding
 attractors. A population with a very low value of [t,
 should display a stable equilibrium. The stable equi-
 librium should bifurcate to a stable two-cycle when uy,

 is increased to low/intermediate values. The two-cycle

 should display a reverse bifurcation to a stable equi-
 librium when Iua is increased to high/intermediate
 values. Finally, at very high values of a,, the stable
 equilibrium bifurcates to a stable, closed loop
 (invariant loop) in phase space: the stage abundances
 eventually follow points around the loop. For most
 of the Ia values in the invariant loop region, the tra-
 jectories around the loop are aperiodic, that is, the
 stage abundances never return exactly to the same
 point on the loop. The resulting aperiodic fluctuations

 are chaos-like, although they do not constitute true
 'chaos' under the usual mathematical definition. (The
 definition of chaos involves 'sensitivity to initial con-

 ditions' as indicated when the 'Lyapunov exponent' is
 greater than zero. An invariant loop has a Lyapunov
 exponent equal to zero and represents a possible route
 to chaos; see Discussion.)

 Here w, = [In /, In Pt, In at]' is a vector of observed
 stage abundances at time t, t = 0, 1,2,..., q and 0 = [b,
 cel, cea, cpa, /1, ta] is a vector of unknown parameters

 in the model skeleton (equations 1-3). The PDF
 p(wt + l I wt) represents the relative chance of the obser-

 vation wt + occurring, given the stage abundances
 observed at time t. It is a multivariate normal PDF

 with a mean vector given by the one-step conditional
 expected values (equations 7-9) and variance-covari-
 ance matrix S. Most actual calculations were per-
 formed with the log-likelihood,

 EXPERIMENTAL PROTOCOL

 To test these predictions of transitions in attractors
 as the adult death rate changes, we experimentally
 manipulated adult mortality rates to place cultures
 of the flour beetle Tribolium castaneum (Herbst) in
 regions of different asymptotic dynamics: a, = 0-04,
 0-27, 0-50, 0-73 and 0-96 (Fig. 1, open circles and
 arrows). There were also control cultures which were
 not manipulated. Unfortunately, the sensitive strain
 of the Fig. 1 data is no longer available, and so we
 performed the experiment using two other genetic
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 0.0 0-2  0.4 0-6 0-8 1.0

 Adult mortality rate, gLa

 Fig. 1. Stability boundaries (top) and bifurcation diagram (bottom) show dynamical behaviours of the LPA model (equations
 1-3) for different values of parameters Xla and cpa. Other parameters are fixed at the maximum likelihood estimates calculated
 for the sensitive genetic strain. *, maximum likelihood estimates for m. and Cpa. 0 and 1, predictions resulting from proposed
 experimental values of adult mortality rate.

 strains, RR and SS. Twenty-four cultures of each
 strain were started with 100 young adults, five pupae

 and 250 small larvae. Each population was contained
 in a half-pint (237 mL) milk bottle with 20 g of stan-
 dard media and kept in a dark incubator at 32?C.
 Every 2 weeks the L-, P-, and A-stages were censused
 and returned to fresh media. Dead adults were cen-

 sused and removed. This procedure was continued for

 36 weeks. At week 12, four populations of each genetic

 strain were randomly assigned to each of the six treat-

 ments, and the imposition of adult mortalities com-
 menced. Adult mortality was manipulated by remov-
 ing or adding adults at the time of a census to make
 the total number of adults that died during the interval

 consistent with the treatment value of adult mortality.

 For example, suppose there were 50 adults (A-stage
 individuals) counted at time t, and the target mortality
 was ma = 0-5. At time t + 1, if 20 dead adults were
 counted, then five living adults would be removed
 (bringing the total dead to 25 = ma x 50). If instead
 30 dead adults were counted at time t + 1, then five
 living adults would be added to the culture. In this

 fashion, the parameter ma was rigorously controlled.
 To counter the possibility of genetic changes in life-
 history characteristics, beginning at week 12 and con-
 tinuing every month thereafter, the adults returned to

 the populations after the census were obtained from
 separate stock cultures maintained under standard
 laboratory conditions.

 STATISTICAL METHODS

 The model was fitted separately to the RR and SS
 data sets. Each data set was divided in half: two popu-
 lations from each treatment (including control) were
 picked at random and assigned to a data set used for
 parameter estimation. The remaining 12 populations
 were withheld for model evaluation.

 The log-likelihood function (equation 11) was
 adjusted to accommodate the experimental design.
 Time series from the 12 'estimation' populations were
 combined into one log-likelihood. Each time-step for
 each population, representing a transition from w, to
 w,+ i, contributed a 'ln p(w, + I w,) term' to the log-
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 likelihood. For the experimentally manipulated popu-

 lations, the value of Ma in the term In p(wt + I w1) was

 fixed at the corresponding experimental value (0-04,
 0-27, 0 50, 0-73, or 0-96). The value of M, in the control

 populations was estimated directly from the census
 counts of adults at time t and dead adults at time t + 1

 (product-binomial likelihood). The resulting estimate
 of Mta was included in the time series log-likelihood as

 a fixed constant. The control populations and exper-
 imental populations were given different variance-
 covariance matrices (Zc and IT) in the log-likelihood;
 we expected that the experimental treatments would
 alter the variability of the adult stage due to the
 manipulation of adult numbers.

 The starting point (t = 0) for each time series was
 week 12, and each series used in the analyses lasted
 24 weeks and contained 12 one-step transitions
 (t = q = 12). Although 12 observations would not
 normally constitute an adequate sample size for time
 series analysis, in our experiment all 12 populations
 from the 'estimation' half of the data were used to

 estimate a common set of parameters. The effective
 sample size was therefore 12 x 12 = 144 transitions
 in the log-likelihood function.

 The log-likelihood function was maximized numeri-

 cally using the Nelder-Mead simplex algorithm (Press
 et al. 1992). A total of 17 unknown parameters were
 included in the log-likelihood: b, cel, cea, cpa, ul, and six

 parameters each in Xc and ET. The calculations were
 numerically well-behaved, and repeated max-
 imizations from many different starting points con-

 verged to the same ML parameter values.
 Confidence intervals were calculated for each

 unknown parameter from the skeleton (equations 1-3)
 using the profile likelihood method. The parameter was

 fixed at a value, and then the log-likelihood was max-

 imized with respect to the remaining parameters. The
 process was repeated for a range of fixed values of the

 parameter in question. The set of such values for which

 the likelihood ratio test statistic (-2 ln[maximized like-

 lihood with parameter fixed/full maximized likelihood])

 was less than 3-843 (95th percentile of a chi-squared
 distribution with 1 d.f.) was taken as an approximate
 95% confidence interval for the parameter. Dennis et al.

 (1995) provide additional details about profile likelihood
 methods for the flour beetle model.

 Residuals and prediction errors were calculated to
 assess the fit and predictions of the model. Residuals
 were calculated on the logarithmic scale, for each state
 variable in each population in the 'estimation' data,
 by substituting the ML estimates in the conditional
 expected values (equations 7-9). Departures of the
 log-state variable from the estimated conditional
 expected values constituted the residuals. Prediction
 errors were calculated similarly, but with the 'vali-
 dation' data set used instead of the 'estimation' data.

 Residuals and prediction errors were subjected to vari-
 ous diagnostic tests for autocorrelation and normality
 described by Dennis et al. (1995).

 Results

 POPULATIONS IN PARAMETER SPACE

 ML parameter estimates for the two strains were for

 the most part similar (Table 1). The values of the par-
 ameter b in the RR and SS strains were consistently
 less than the value reported for the sensitive strain
 (b = 11 7; Dennis et al. 1995) on which Fig. I was
 based. All the ML estimates of the 'skeleton'

 parameters (b, c, Ce,, eap, M, , Ma) have biologically
 reasonable values. The covariances in the variance-

 covariance matrices were small: the absolute values

 of the correlations did not exceed 0-50.

 The resulting stability regions for the RR and SS

 strains, plotted on the cpa,-, plane in parameter space
 in Figs 2 and 3, respectively, were qualitatively similar

 to the regions depicted for the sensitive strain in Fig. 1.

 The main quantitative difference between the RR and

 SS regions in Figs 2 and 3 and the sensitive regions in

 Fig. 1 is that the zones of various dynamic behaviours
 in the former are pushed further to the right and occur

 at higher values of a. The lowered value of b in the
 RR and SS experiments produced a stabilizing effect
 of sorts and in particular made the aperiodic region
 harder to attain.

 Nonetheless, the SS strain for the 1a = 0-96 treat-

 ment was placed by the ML estimates within the region

 of aperiodic fluctuations (Fig. 3). The t, = 0-96 treat-

 ment for the RR strain was just outside the aperiodic
 region, in a region of stable point equilibria (Fig. 2).
 Simulations have shown that the transient approach
 to equilibrium for the RR treatment at ta = 0-96 is
 extremely long and aperiodic (see Discussion), so the
 dynamical behaviour of the RR populations at
 ta = 0.96 closely resembles invariant loop behaviour.

 The other experimental treatments were located by
 the ML estimates among the different zones of
 dynamic behaviour (Figs 2 and 3). The control popu-
 lations for both strains (extreme left points; Figs 2 and

 3) were in regions in which the attractors were stable
 point equilibria. The a, = 0-04 treatments for both
 strains were also in the stable equilibria regions. The

 Ma = 0.27 and ,a = 0.50 treatments were in regions
 where stable two-cycles govern long-range behaviour.

 For the SS strain, the l,a = 073 treatment populations
 were in a region of stable point equilibria. The
 Ma = 0-73 treatment for the RR strain was also in the

 stable point equilibria region, but was close to the two-

 cycle boundary. Overall, the transitions in dynamic
 behaviour in the experimental cultures (Figs 2 and 3),
 as classified by ML parameter estimates, were highly
 consistent with the transitions predicted by the earlier

 modelling study (Fig. 1).

 OVERVIEW OF TRANSITIONS IN DYNAMIC

 BEHAVIOUR

 The ML parameter estimates thus place the treatments
 in regions of different dynamic behaviours. Do the
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 Table 1. Maximum likelihood parameter estimates for the RR and SS genetic strains. The 95% confidence intervals (par-
 entheses) for the parameters b, H1l, ce, egl, and cp, were calculated from profile likelihoods. The estimates (and 95% confidence
 intervals) for H. were calculated directly from the numbers of dead adults observed in the control cultures. Correlations are
 listed in parentheses below the main diagonals of the symmetric variance-covariance matrices for control (1c) and treatment
 (IT) replicates

 Parameter RR strain SS strain

 b 7-876 (58, 10.7) 7-483 (54, 10.3)
 Ha 0-004210 (0-0032, 0-0052) 0-003620 (0-0027, 0-0045)
 Hi 0-1613 (0-10, 022) 0-2670 (0.21, 032)
 Cea 0-01114 (0-010, 0-012) 0-009170 (0-0081, 0-010)
 Cel 0-01385 (0-012, 0-015) 0-01200 (0-011, 0-013)
 Cpa 0-004348 (0-0039, 0-0048) 0-004139 (0-0037, 0-0046)

 0-5670 -0-1452 0-002469 008044 0-02820 0-004317

 Zc (-0-49) 0-1573 0-001549 (0-08) 0-1593 0-003409

 (0-28) (0-31) 0-0001541 (0-11) (0-19) 0-001986

 08280 -0-08448 -0-002971 0-8673 001366 -0-004042

 ET (-0-22) 0-1749 -0-02020 (0-03) 0-2221 0-01012

 (-0-02)(-0-033) 0-02057 (-0'04) (0-21) 0-01087

 0*010
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 Fig. 2. Stability boundaries and bifurcation diagram for the RR genetic strain. o, experimental values of adult mortality rate.
 * and bars, maximum likelihood estimates and 95% confidence intervals for locations of experimental cultures.
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 populations indeed display the predicted dynamic
 behaviours? In Figs 4 and 5, all the data are plotted,
 including the initial 12 weeks collected before the com-

 mencement of the adult replacements and the adult
 mortality treatments. The differences in dynamic
 behaviours among treatments, and the resemblances
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 0-2 0-4 0-6 0-8

 0-4 0-6

 Adult mortality rate, ga

 Fig. 3. Stability boundaries and bifurcation diagram for the SS genetic strain. Symbols as in Fig. 2.

 of the treatments to the dynamic behaviours predicted

 by the model, are striking. Both qualitatively and
 quantitatively, transitions in dynamics occurred
 among the populations, of a nature predictable by a
 nonlinear mathematical model.

 MODEL GOODNESS-OF-FIT

 The model fitted the experimental data well. Tables 2

 and 3 list results from analyses of the residuals for the

 RR and SS strains, respectively. The residuals, it will
 be recalled, were obtained from the halves of the RR

 or SS data sets designated for parameter estimation.
 The residuals are the estimated outcomes of the noise

 variables E,n in the model (equations 4-6) and should
 display approximately the statistical properties of the
 noise variables. Each individual time series of

 residuals, representing one state variable (L, P, or
 A,) from one population, was tested separately for
 departure from normality and autocorrelation (first-
 and second-order). Significant first-order auto-
 correlation was detected in just one (3%) of the 36
 RR residual time series (Table 2) and in none of the
 SS series (Table 3). Significant second-order auto-
 correlation was detected in just two (6%) of the RR
 series and two of the SS series. Departure from a

 normal distribution was detected in 12 (33%) of the
 RR series and six (17%) of the SS series. Normality
 departures can be traced to a small number of outliers;
 most of the observations in each series were well

 described by a normal distribution. These results com-

 pare favourably with the same analyses reported by
 Dennis et al. (1995, Table 2) for 12 series of the sen-
 sitive strain (no first-order autocorrelated series (0%),

 two second-order autocorrelated (17%), three non-
 normal series (25%)).

 PREDICTION ERROR

 Model predictions were excellent. Tables 4 and 5 sum-

 marize the analyses of prediction errors for the RR
 and SS strains. Recall that the prediction errors were
 obtained from the halves of the RR or SS data sets

 designated for model validation. The prediction errors
 analysed in Tables4 and 5 have been standardized
 (centred at their mean and divided by their standard
 deviation) in order to separate autocorrelation and
 normality evaluation from prediction bias evaluation.
 No significant first-order or second-order auto-
 correlation was detected in any of the time series in
 the 'validation' data (Tables 4 and 5). Departure from
 a normal distribution was detected in just 14 (39%)
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 Fig. 4. Transitions in dynamical behaviour are displayed in the time-series data for the individual replicates of the RR strain.
 Top panel: control populations (/l unmanipulated). Lower panels: treatment populations (lla manipulated).

 of the 36 RR series and eight (22%) of the SS series.
 Again, a small number of outliers caused these depar-
 tures. These results compare favourably with the same

 analyses reported by Dennis et al. (1995) for 27 series
 of the sensitive strain (one first-order autocorrelated

 series (4%), two second-order autocorrelated series
 (7%), 10 non-normal series (37%)).
 Prediction bias was negligibly small. A prediction
 bias would be indicated if the prediction errors were
 centred at a non-zero value. A systematic tendency
 for the model to underpredict or overpredict would
 be the cause. Each series of prediction errors was
 tested for whether or not it arose from a distribution

 with a mean of zero (t-test). Only three of the 36
 RR strain series showed significantly non-zero means

 (replicate 1, P,: T= -2-46, P = 0-03; replicate 8, L,:

 T= 2-40, P = 0-04; replicate 11, P,: T= 3-07,
 P = 0-01). Only two of the SS series showed sig-
 nificantly non-zero means (replicate 17, A,: T = -2-83,
 P = 0-02; replicate 18, A,: T = -303, P = 0-01). The
 prediction biases of the three RR series on the original

 scale represent only about two pupae, 13 larvae, and
 six pupae, respectively; the prediction biases for the
 two SS series are just three adults and seven adults,
 respectively.

 VISUALIZATION OF THE TIME SERIES:

 ESTIMATION AND VALIDATION DATA SETS

 The residual analyses suggest that most of the sys-
 tematic, predictable variability in the data was
 accounted for by the model skeleton (equations 1-3).
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 Fig. 5. Transitions in dynamical behaviour are displayed in the time series data for the individual replicates of the SS strain.
 Top panel: control populations (ya unmanipulated). Lower panels: treatment populations (/la manipulated).

 Plots of the data and fitted model support this view.
 Time series plots for the L-stage, P-stage and A-stage
 are presented for both the RR and SS strains in Figs 6-

 11 and Figs 12-17, respectively, for every population
 used in the parameter estimation (top six panels) and
 model validation (bottom six panels). The fitted model

 is portrayed as one-step predictions (open circles), that
 is, as the projected value of the state variable at time
 t + I (equations 1-3 with ML parameter estimates)
 given the actual values of the state variables at time t.
 As can be seen from the graphs in Figs 6-17, the
 one-step predictions associated with the 'estimation'
 data overall are in close agreement across all [a treat-
 ments for both genetic strains. Stochastic departures
 from the deterministic one-step forecasts are largest
 for the L-stage. A typical departure on the original

 (nonlogarithmic) scale, as measured by the mean
 absolute deviation of observed from one-step pre-
 dicted values, is about 33 L-stage individuals, com-
 pared with eight P-stage and six A-stage individuals,
 for the RR strain (SS: 43 L-stage, 16 P-stage, 10 A-
 stage).

 The prediction analyses, as discussed in the previous
 section, confirm that the model skeleton (equations
 1-3) accounts for most of the systematic, predictable
 variability in the data, and that the noise model
 adequately describes the remaining unpredictable
 variability. Plots of the 'validation' data and the one-
 step model predictions illustrate this view (Figs 6-17).
 The one-step predictions associated with the 'vali-
 dation' data are in close agreement across all L,, treat-
 ments, for both the RR and SS strains.
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 Table 2. Residual analyses for the RR strain with the cultures used to estimate the parameters in the model. First- (pl) and
 second-order (P2) sample autocorrelations and Lin-Mudholkar (Z) test statistic for normality

 Pa Test statistic Lt Pt At Lt Pt At

 Replicate 7 Replicate 13
 0-0042 Pi -0-31 0-33 -0.22 0-02 0.09 0.01
 (control) P2 --0.11 0.09 -0-24 0-35 -0-10 0-20

 Z 0-05 1-74 1-60 1-36 2-57* -1-11

 Replicate 14 Replicate 20
 0-04 Pi -0-04 0-15 -0-02 -0-18 -0-34 0-02

 P2 0.19 0-39 0-59* 0-14 -0-03 -0-16
 Z -0-02 2-84* 1-31 -0-33 -1-83 -2-83*

 Replicate 3 Replicate 15
 0-27 Pi 0-16 0-13 -0-19 0-05 -0-03 -0-16

 P2 0.10 -0-28 0-07 0-50 0-16 0-07
 Z 1-20 -3.46* 4.04* 0.80 0-84 -1-55

 Replicate 4 Replicate 16
 0-50 Pi -0-03 -0-29 0.10 0-39 0-07 0-03

 P2 0-19 -0-25 -0-23 0-34 0-29 -0-33
 Z 1-73 2-48* -1-50 -0-91 0-53 -1-72

 Replicate 17 Replicate 23
 0-73 Pi -0-01 -0-18 -0-04 -0-01 -0-10 -0-13

 P2 0.11 0-03 0.19 0-05 -0-28 -0-27
 Z 1-22 1-45 -0-72 0-80 -2-73* -1-84

 Replicate 6 Replicate 12
 0-96 Pi 0.01 0-03 0-06 -0-65* 0-04 0-07

 P2 -0-19 -0-12 0-13 0-58* -0-06 -0-23
 Z 2.11* 2-36* 3-02* 1-01 -2.01* -2-47*

 *Pi, P2 significant if 2//q = 2/1 12 = 0-577 is exceeded in absolute value; Z
 hypothesis of normality.
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 Table 3. Residual analyses for the SS strain with the cultures used to estimate the parameters in the model. First- (pi) and
 second-order (P2) sample autocorrelations and Lin-Mudholkar (Z) test statistic for normality

 Pta Test statistic Lt Pt At Lt P At

 Replicate 7 Replicate 19
 0-0036 Pi -0-14 -0-44 -0-30 -0-31 -0-03 0-32
 (control) P2 -0-29 0-05 -0-17 0-05 -0-46 -0-44

 Z -1-73 0.01 -2-03* 0-31 1-23 -1-67

 Replicate 8 Replicate 14
 0-04 Pi -0-04 -0-27 -0-02 0-24 0-24 0.11

 P2 -0-35 -0-25 -0-66* -0-09 0.01 -043
 Z -0-95 0-26 -0-42 -0-76 -0-48 -1-94

 Replicate 9 Replicate 15
 0-27 pi -0-25 -0-13 0.09 -0-38 0-15 0.08

 P2 0-58* -0-16 -0-01 0-31 -0-09 -0-10
 Z 1-42 1-26 -1-45 2-01* 3-47* -0-82

 Replicate 4 Replicate 22
 0-50 Pi -0-35 0-35 0-14 -0-29 0-23 0-34

 P2 -0-12 -0-09 0-13 -0-25 -0-18 -0-27
 Z 2-35* -0-50 -1-64 -0-80 0-40 -2-01*

 Replicate 5 Replicate 23
 0-73 pi 0-21 0-33 -0-10 -0-13 -0-39 -0-28

 P2 -0-11 0-04 -0-01 0-04 -0-12 0-18
 Z -0-67 0-25 0-79 0-95 1-36 -0-37

 Replicate 12 Replicate 24
 0-96 Pi -0-14 0-28 -0-01 -0-39 0-07 0-04

 P2 -0-18 -0-47 -0-32 -0-003 0-13 0-14
 Z 0-71 1-84 1.09 -1-16 -2-27* 0.89

 *Pi, P2 significant if 2/lq = 2/1/12 = 0-577 is exceeded in absolute value;
 hypothesis of normality.

 Z should be a standard normal variate under
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 Table 4. Prediction error analyses for the RR strain with the cultures used to validate the LPA model. First- (pi) and second-
 order (P2) sample autocorrelations and Lin-Mudholkar (Z) test statistic for normality

 [a Test statistic Lt Pt At Lt P At

 Replicate 1 Replicate 19
 0-0042 Pi 0.08 0.11 -0-44 -0-16 0-05 -0-13
 (control) P2 -0-12 0-03 -0-13 -0-49 -0-31 -0-10

 Z 0.23 0-96 -1-67 0-52 -0-42 -1-60

 Replicate 2 Replicate 8
 0-04 Pi -0-23 -0-09 0.05 0-20 0.10 -0-28

 P2 -0-14 -0-21 -0-38 -0-04 -0-27 -0-27
 Z 0-43 4-14* -1-42 -0-91 2-84* 2-07*

 Replicate 9 Replicate 21
 0-27 Pi -0-003 -0-04 -0-25 0.11 0.18 -0-34

 P2 0-14 -0-36 0-47 0-54 -0-09 0.46
 Z 1-06 -1-81 -1-57 2-29* 2-18* -2-24*

 Replicate 10 Replicate 22
 0-50 pi 0-13 -0-27 -025 0.01 0-12 -0-57

 P2 0-48 -0-07 0-23 0-22 0-01 0-34
 Z -0-13 -2-98* -2-28* 3-29* -1-18 -1-72

 Replicate 5 Replicate 11
 0-73 Pi -0- -0-014 -0-32 -0-04 -0-41 -0-38

 P2 0-37 0-02 0-12 0-25 0-15 0.18
 Z 1.10 -1-70 -2-42* 2-14* -2-25* -0-36

 Replicate 18 Replicate 24
 0-96 pi -0-18 0-29 -0-18 -0-53 0-07 -0-12

 P2 0.18 -0-24 0.01 0-32 -0-26 -022
 Z 2-19* -1-73 -0-96 1-35 2.20* 1.00

 *pi, P2 significant if 2//q = 2//12 = 0-577 is exceeded in
 hypothesis of normality.
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 Table 5. Prediction error analyses for the SS strain with the cultures used to validate the LPA model. First- (p,) and second-
 order (P2) sample autocorrelations and Lin-Mudholkar (Z) test statistic for normality

 ]a Test statistic Lt Pt At L Pi At

 Replicate 1 Replicate 13
 0.0036 Pi 0-03 0-06 0-37 -0-13 0-20 0-06
 (control) P2 -0-31 0-30 -0-12 0.11 -0-34 -0-53

 Z 0-81 1-73 -1-70 1.19 -0-97 -1-35

 Replicate 2 Replicate 20
 0-04 Pi 0-25 0-41 0-20 -0-34 -0-04 0-17

 P2 0-17 0-25 -0-43 0-13 -0-02 -0-22
 Z -0-36 0.81 -2.22* 0-36 2.18* -1-61

 Replicate 3 Replicate 21
 0-27 Pi 0.12 0-52 -0-02 -0-08 -0-17 0-004

 P2 0.18 0-08 -0-55 -014 -0-25 -0-16
 Z 0-41 0-13 -1-33 -0-23 3.07* -0-42

 Replicate 10 Replicate 16
 0-50 pi -0-02 0.09 0-38 0-03 -0-10 -0-01

 P2 -0-43 -0-06 -0-01 -0-20 -0-15 0.15
 Z -1-13 1-58 -1-86 0-49 -2.74* -1-25

 Replicate 11 Replicate 17
 0-73 Pi -0-31 0-47 0-15 -0-40 -0-25 -0-12

 P2 0-25 0-24 -0-21 0-11 -0-45 0-04
 Z -0-11 0-79 0-60 2.03* 2.29* -0-45

 Replicate 6 Replicate 18
 0-96 Pi -0-16 0-36 -018 -0-38 0-37 0.08

 P2 0.18 0-05 0-45 -012 -0-13 0-10
 Z -0-65 0-60 2-59* 1-43 2-01* 1-68

 *pi, P2 significant if 2//q = 2//12 = 0-577 is exceeded in absolute value;
 hypothesis of normality.

 Z should be a standard normal variate under
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 Fig. 6. Census data and one-step predictions for the estimation and validation replicates of the RR control treatment.

 Discussion

 INVARIANT LOOPS

 An invariant loop is a mathematical entity best por-
 trayed in phase space (Fig. 18a). It is a closed loop in
 phase space that is invariant in the sense that tra-
 jectories starting at a point on the loop will remain on

 the loop for all future time. An invariant loop is stable

 or attracting if any trajectory that starts at a point
 sufficiently near the loop will tend asymptotically to
 the loop (in the sense that the distance from the tra-
 jectory to the loop tends to zero as time increases
 without bound). An invariant loop is not a single
 trajectory but a collection of trajectories, which makes
 it different from the more familiar attractors such as

 equilibria and periodic cycles.
 Typically, most parameter values causing invariant

 loop behaviour will produce trajectories having
 rotational angles around the loop that are irrational

 multiples of 7r, and hence a trajectory on a loop does
 not ever exactly repeat its initial conditions. Occasion-

 ally, windows of parameter values can cause 'period
 locking,' or true periodic behaviour in which the initial

 condition on the loop is repeated. Invariant loops
 represent aperiodic (or period locked) motion, but not

 chaotic motion. Technical definitions of chaos vary in
 the nonlinear dynamics literature, but most definitions

 require some sort of sensitivity to initial conditions
 (for example, Devaney 1989). The popular quan-
 titative measure of such sensitivity is the Lyapunov
 exponent (LE). The LE is the exponential rate of
 change 2 in the separation of nearby trajectories (tra-
 jectories with small differences in their initial con-
 ditions). To an approximation

 dn, = dno 2',

 where n, is the state of the system (here, for illustration,

 one-dimensional) at time t, and 2 is the LE. If i > 0,
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 Fig. 7. Census data and one-step predictions for the estimation and validation replicates of the RR ji, = 004 treatment.

 a small change in initial conditions represented by dno

 becomes magnified exponentially through time into a
 large change dn, in n,. For an invariant loop the LE is
 = 0.

 Thus, the invariant loop behaviour displayed by the
 SS populations at Ma = 0-96, while aperiodic, is not
 chaotic. Although we were careful to avoid labelling
 this behaviour as chaos in our earlier announcement

 (Costantino et al. 1995), the bifurcation diagram
 (Fig. 3) might be misinterpreted as implying chaos
 (Rohani & Miramontes 1996).

 An invariant loop is a curious object in its own right

 and is a frequent prediction of nonlinear models. Its
 documentation in a real biological system is as prob-
 lematic as the documentation of true chaos. The

 experimentally induced shifts in dynamic behaviours,

 we believe, coupled with the results of the model diag-
 nostic and predictive analyses, constitute strong evi-
 dence that the fluctuations of the SS populations at
 la = 0-96 were governed largely by an invariant loop.

 Moreover, the evidence strongly suggests that the

 RR populations at Ma = 096 were influenced by
 invariant loop-like dynamics. Recall that these RR
 populations are located near the stability boundary
 where the stable equilibrium bifurcates into an
 invariant loop. Near the boundary, trajectories
 behave similar to trajectories on an invariant loop,
 except that the amplitude of the cycling is damped
 inward each time round (Fig. 18b). A trajectory under
 the RR parameter estimates approaches a stable equi-
 librium, but only after a long transient period of
 damped loop-like behaviour.

 Invariant loops are important in nonlinear dynam-
 ics as a frequent 'route to chaos' (Caswell 1989;
 Rohani, Miramontes & Hassell 1994; Rohani & Mir-
 amontes 1995). The onset of chaos in response to a
 change in a parameter, in this scenario, is preceded by
 a regime of invariant loops (aperiodic and period-
 locking behaviour). A different route to chaos, more
 familiar to ecologists, is the period-doubling cascade
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 Fig. 8. Census data and one-step predictions for the estimation and validation replicates of the RR Al = 0-27 treatment.

 exemplified by the logistic map (May 1976). The
 period-doubling route in fact is observed less frequently
 in theoretical studies of realistic nonlinear models.

 The invariant loop behaviour displayed at high Ha
 values for the RR and SS parameter estimates points
 the way to other regions of parameter space where the

 model displays true chaos (see, Further experiments).

 APPROACHES TO TESTING NONLINEAR

 POPULATION DYNAMICS

 There is an enduring uneasiness among ecologists
 about the role of nonlinear dynamics in our under-
 standing of population fluctuations. 'Applied' math-
 ematical studies of quasi-ecological models have pro-
 liferated in the mathematical biology literature, and
 sorting out the scientific assertions in this literature
 from purely mathematical results has proved daun-
 ting. Ecologists are right to be sceptical about claims

 concerning bifurcations, limit cycles and strange
 attractors in nature. Mathematical ecology studies
 have too often made oversimplified or unsub-
 stantiated assumptions (Strong 1986a,b). Population
 models were often proposed without explicit gui-
 delines about how to connect such models to data

 (Dennis et al. 1995). Convincing examples in which a
 nonlinear population model can be considered reliable

 knowledge about a real population system are dis-
 tressingly scarce. Thus, arguments that chaos is preva-
 lent in ecological systems based on the prevalence of
 chaos in ecological models (see Hastings et al. 1993
 for a review) have not, in general, found a receptive
 audience among data-orientated ecologists.

 A more intriguing approach to testing nonlinear
 population dynamics focuses on analysing time series
 observations of population abundances (reviewed by
 Hastings et al. 1993). The analyses involve using non-
 or semi-parametric statistical techniques to estimate
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 Fig. 9. Census data and one-step predictions for the estimation and validation replicates of the RR p, = 0-50 treatment.

 the map (skeleton) that produced the data. Such
 analyses have indicated the presence of stable points,
 stable cycles, and even chaos, in various population
 systems (Ellner & Turchin 1995). However, the time
 series in these analyses came from observational stud-

 ies. Also, the biological mechanisms driving the popu-
 lation fluctuations were hypothesized only, and not
 included explicitly in the models used to analyse the
 data. Consequently, these types of analyses are sugges-

 tive of an important role for nonlinear dynamics in
 population fluctuations, but are intrinsically limited
 in the types of conclusions that can be drawn.

 Several recent investigations have attempted to fit
 or describe natural populations with nonlinear, low-
 dimensional mechanistic models (Olsen & Schaffer
 1990; Grenfell et al. 1992; Bolker & Grenfell 1993;
 Hanski et al. 1993; Carpenter, Cottingham & Stow
 1994; Hanski & Korpimaki 1995). A growing sub-
 area of related research is concerned with statistical

 methods for fitting such models to time series data
 (Carpenter et al. 1994; Dennis et al. 1995; Pascual
 & Kareiva 1996). For situations in which the main
 biological interactions are well known, this approach
 has potential for showcasing nonlinear population
 models as practical data analysis tools. Important
 details regarding the forms of the models, though,
 such as whether a predation function should be prey-
 dependent or ratio-dependent, can remain non-
 identifiable, especially when there are sampling errors
 in the data (see Carpenter et al. 1994; Pascual & Kar-
 eiva 1996). Predictions of chaos and other dynamical
 behaviours, such as those issued by Hanski et al.
 (1993) for boreal rodents, can hinge on fine details of
 model structure (Sturis & Knudsen 1996). The obser-
 vational nature of the data is also a limitation of

 this type of approach; system manipulations may be
 necessary to distinguish between contending models
 (Carpenter et al. 1994).
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 Fig. 10. Census data and one-step predictions for the estimation and validation replicates of the RR p, = 0-73 treatment.

 Our study was not aimed at documenting chaos,
 per se. Rather, our study was aimed at the broader
 question of whether or not the modelling methods of
 nonlinear dynamics could provide an accurate quan-
 titative description of a biological population. Our
 goal was to find out how well a biologically based
 model would perform under ecologically idealized con-

 ditions. Our particular model was a stage-structured
 model believed to include the main interactions in-

 fluencing the population fluctuations. The model
 was developed by us earlier (Dennis et al. 1995) and
 based on almost 70years of flour beetle research by
 numerous investigators (see Costantino & Desharnais
 1991 for a review). The experimental system was easily

 censused, replicated, and manipulated. Under such
 conditions, if nonlinear dynamics is to be taken seri-

 ously in population biology, we would expect the
 model to make detailed, accurate predictions.

 Hutchinson's oft-repeated argument that lab-

 oratory populations are simply analogue computers
 set up to solve model equations (for instance Col-
 inveaux 1973; Hutchinson 1978) was either glib or
 excessively optimistic about mathematical population

 models. Laboratory systems are beguilingly complex,
 and sorting out the essential regulating mechanisms
 can consume whole careers (Park et al. 1970, p. 183).
 While laboratory microcosms cannot substitute for
 manipulative field experiments (Carpenter 1996), the
 isolation of treatment factors possible in the lab-
 oratory has been useful for testing basic ecological
 concepts and has historically complemented field
 results (Ives et al. 1996). Certainly, success stories
 connecting mathematical modelling and laboratory
 experiments have been few and far between. As a
 result, Kareiva (1989) issued an emphatic call for more

 bottle experiments (see also Godfray & Blythe 1990),
 and for better, more direct couplings of mathematical
 models and data.
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 Fig. 11. Census data and one-step predictions for the estimation and validation replicates of the RR /, = 0-96 treatment.

 The LPA model (equations 1-3) makes some
 intriguing predictions about dynamic behaviours for
 other regions of parameter space. Although the pre-
 sent experiment did not produce 'chaos in a bottle,'
 the prospect of true chaos is certainly predicted for
 other parameter values; for instance, the dynamical
 behaviour at the adult mortality value of a, = 0-96 in
 the present experiment was at (SS strain) or near (RR
 strain) invariant loop behaviour. Because invariant
 loops are a common 'route to chaos' (Caswell 1989;
 Rohani et al. 1994; Rohani & Miramontes 1995), it
 makes sense to hunt for chaos in nearby regions of
 parameter space.

 Suppose the adult-on-pupae cannibalism
 parameter, Cpa, were changed, with all other par-
 ameters remaining at the estimated values, and with
 Ha = 0-96. Model simulations reveal a striking series

 of predicted transitions in dynamic behaviour as the

 value of Cp, changes. Figure 19 displays the predicted
 bifurcation diagram for the L-stage abundances of the
 RR strain. As Cpa increases, a transition from stable

 equilibria to invariant loop behaviour (aperiodic)
 occurs, followed by transitions to period-locking
 (periodic behaviour), and chaos. At around Cpa = 0-43,
 the chaos region is predicted to break down suddenly
 into a region of stable three-cycles which extends to
 Cpa = 1-00. However, embedded within this region of
 stable three-cycles is a period doubling/chaos attrac-
 tor; this region of multiple attractors extends from

 Cpa = 056 to Cpa = 070. An experimental study
 designed to evaluate these predictions has recently
 been completed (Costantino et al. 1997).

 Other predictions of intriguing nonlinear behav-
 iours in the LPA model have emerged; we mention
 two.

 First, the exponential nonlinearities in the LPA
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 Fig. 12. Census data and one-step predictions for the estimation and validation replicates of the SS control treatment.

 model describe the basic mechanism of search-and-

 encounter cannibalism. The exponential terms can be

 reparameterized to show explicitly the volume of flour

 in the culture container (the volume is currently
 'absorbed' in the parameters CeI, Cea, and Cpa). With
 flour volume represented, the effects of time-varying

 habitat sizes can be studied analytically and simulated.

 Multiple attractors, and the 'Jillson effect' (increase
 of overall population abundance in periodically fluc-
 tuating habitats; Jillson 1980) are among the behav-
 iours predicted for Tribolium populations in con-
 tainers with periodically alternating volumes of flour
 (Henson & Cushing 1997; R.F. Costantino et al.,
 unpublished).

 Second, when the point equilibrium of the LPA equa-

 tions (1-3) is unstable, it resides on a low-dimensional
 stable manifold. Trajectories that start near the stable
 manifold (or are shoved near by stochastic noise)
 execute a 'fly-by' (approach and near-miss) of the

 unstable equilibrium en route to the stable attractor
 (Cushing et al. 1996, unpublished). Thus, because the
 stochastic noise eventually perturbs the population
 away from the stable attractor and into the region of
 influence of the stable manifold, a long trajectory is

 predicted to show an occasional transient fly-by of the

 unstable equilibrium.
 For both of the above situations, straightforward

 laboratory experiments should reveal the predicted
 behaviours. Such experiments would constitute fur-
 ther strong tests of the LPA model. Indeed, much
 even remains to be discovered about the mathematical

 properties of the model itself.

 IMPLICATIONS FOR APPLIED ECOLOGY

 The experimental results should give pause to equi-
 librium-based theories of harvesting biological
 resources. The concept of 'sustained yield,' whether
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 Fig. 13. Census data and one-step predictions for the estimation and validation replicates of the SS Pa = 0-04 treatment.

 maximum, optimum or otherwise, is based on a point
 equilibrium attractor (Clark 1976). According to these
 theories, the point equilibrium of the resource
 responds smoothly to moderate changes in the harvest
 rate, with the possible exception that the equilibrium
 could collapse at high harvest rates due to depensation

 or Allee effects (Clark 1976; Dennis 1989). Manage-
 ment sets a harvest rate for whatever objective, then
 waits for the population system to settle down and give

 forth an equilibrium yield for whatever time period.

 However, if the system has nonlinear feedbacks, the

 equilibrium is not necessarily a point. The attractor
 could be an n-cycle, a loop or a strange attractor; the
 system could even have multiple attractors.
 The LPA model (equations 1-3) resembles a stage-
 structured Ricker model, albeit with some unusual

 complexities in the density-dependent feedbacks. The
 Ricker model is routinely used in fisheries man-
 agement to describe fish recruitment and set sustained

 yield policies (Newman 1993). Many fish species are
 in fact cannibalistic (adults on eggs or juveniles), and
 the Ricker exponential nonlinearity is frequently an
 appropriate mechanistic as well as purely descriptive
 model. Even a simple one-stage Ricker model has the
 potential for displaying a variety of stable attractors
 (May 1976).

 In our experiment, the adult mortality parameter
 Pa can be regarded as a harvest rate. In response to
 experimentally set harvest rates, the system displayed
 not only point equilibria, but two-cycles and invariant
 loops as well. In the SS strain at /, = 0-96, the 'sus-
 tained yield' is aperiodic; population sizes (and yields)
 under this regime vary widely. With the inescapable
 stochastic noise present, the trajectories would
 occasionally be influenced by the stable manifold in
 the system. The enduring cyclic or aperiodic behav-
 iour, coupled with occasional fly-bys of a point equi-
 librium, would appear quirky to managers without a
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 Fig. 14. Census data and one-step predictions for the estimation and validation replicates of the SS fta = 0-27 treatment.

 detailed understanding of the biological interactions
 in the system.

 The experiment also suggests a cautious approach
 to pest management (Kareiva 1995). The adult mor-
 tality treatments can be likened to pest reduction mea-

 sures of varying severities. The nonlinear feedbacks in

 the system, however, here caused the reduction efforts

 to fail. What were stable equilibria in various treat-
 ments became unstable equilibria (stable cycles or
 loops) upon the increase of Ha. Wide oscillations
 ensued in which the upswings in adult population sizes

 were higher than the stable equilibrium sizes. That
 nature's nonlinear feedbacks might cause pest
 reduction efforts to backfire has been a theme of pest

 dynamics theory for many years (for instance, Allen
 1989; Logan 1989).

 CONCLUDING REMARKS

 In our view, one of the key predictions emerging from

 nonlinear ecological modelling is not that populations

 are likely to be chaotic per se, but rather that popu-
 lations will undergo transitions among behaviours
 associated with different attractors in response to
 changing conditions. We demonstrated that fluctua-
 tions of a stage-structured population system could be

 explained and closely forecasted by a low-dimensional
 nonlinear model. In response to our experi-
 mental manipulations of a control parameter, the
 system displayed the bifurcations and attractor behav-

 iours predicted by the model. Careful attention to the
 statistical connections between model and data was a

 feature of our work. We believe the approach and
 results reported here point the way to a heightened
 level of relevance of nonlinear mathematics in popu-
 lation biology.

 Acknowledgements
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 Fig. 16. Census data and one-step predictions for the estimation and validation replicates of the SS ,, = 0-73 treatment.
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