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 SUMMARY

 (1) A gamma steady-state probability distribution was established for adult numbers in
 continuously growing populations of the flour beetle Tribolium. The derivation of the
 distribution was based on a general stochastic model of population growth with three
 biological entities: adult inhibition of immatures, pupal productivity, and death-rate among
 adults.

 (2) The hypothesis of a gamma steady-state distribution was tested using thirteen
 observed frequency distributions of adult numbers for Tribolium castaneum and Tribolium
 confusum. The data, in general, supported the gamma steady-state hypothesis.

 (3) Using the theoretical gamma probability distribution an attempt was made to explain
 the Tribolium data and identify testable hypotheses. For instance, the observed differences
 in the mean and variance of the adult steady-state distributions for the genetic strains of T.
 castaneum and T. confusum were qualitatively consistent with the theoretical predictions
 based upon differences in cannibalistic rates, pupal productivity and adult death-rates. The
 expected effects of stochasticity on the mean and variance were also discussed.

 (4) The stochastic differential equation of population growth was viewed using the Ito
 and Stratonovich definitions of stochastic integrals. Both procedures yielded gamma
 steady-state distributions; however, the conditions for the existence of the stationary
 densities were different. With stochastic variation in the death-rate among adults, the
 existence conditions for the Ito calculus was that the magnitude of the stochastic variance
 must be less than twice the difference between the number of pupae produced per parent
 and the death-rate among adults. For the stratonovich calculus, the stationary density
 always existed.

 INTRODUCTION

 Adult numbers in single species cultures of the graminivorous beetles Tribolium confusum
 Duval and Tribolium castaneum Herbst were observed by Park (1954) to achieve some
 stationary distribution after 360 days of continuous culture. In a stochastic, two age-class
 model for Tribolium, Leslie (1962) attempted to reproduce the type of frequency
 distributions observed in the experiments of Park (1954). The distribution of adult
 numbers predicted by the Leslie model was approximately Gaussian in form. However, the
 observed Tribolium distributions were all asymmetric and skewed to the right. While the
 model did not provide an adequate description of the experimental data (Leslie 1962, p.
 14), the analysis did focus attention on this important aspect of the observed data.

 Our objectives in this note are three-fold: (i) to establish that the theoretically expected
 steady-state distribution of adult numbers based on a general stochastic model of
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 Equilibrium distributions

 population growth is a gamma distribution, (ii) to test this hypothesis with Park's (1954)
 data on the grouped frequency distributions of adult numbers analysed by Leslie (1962)
 and to test similar data reported in Park, Leslie & Mertz (1964) and Moffa & Costantino
 (1977), and (iii) to discuss the biological implications of the gamma steady-state
 distribution.

 DERIVATION OF GAMMA PROBABILITY DISTRIBUTION

 Population growth model

 Our basic population dynamic model for adult number attempts to explain the changes
 in the size of the adult beetle population based on the association between the number of
 adults and the number of progeny produced by these adults. Let C be the probability that a
 single adult prevents a potential recruit from entering the adult population in some small
 time interval (t, t + At). Assuming adults act independently, the proportion of potential
 recruits that become adults during this interval will be (1 - C)(t) e-CA(t) for small C,
 where A(t) is the number of adults at time t. Defining X as the rate at which potential
 recruits are produced per adult and D as the adult mortality rate, we can describe the
 change in adult numbers during (t, t + At) as

 A (t + At) - A (t) = AtA (t)Xe-At) - AtA (t)D.

 Dividing through by At and taking the limit as At goes to zero we have

 dA (t)/dt = A (t)Xe-A(t) - A (t)D (1)

 as our model (Ricker 1954; Lloyd 1968; Desharnais & Costantino 1980). The equilibrium
 number of adults for this deterministic differential equation is A* = log (X/D)/C and the
 equilibrium is stable if X > D, or equivalently if A* > 0 (Desharnais & Costantino 1980).
 However, Park (1954); Leslie (1962); Park, Leslie & Mertz (1964) and Moffa & Costantino
 (1977) noted that continuously growing cultures of these graminivorous beetles did not
 assume a fixed equilibrium number of adults, A*, but rather achieved some stationary
 distribution.

 There are two principal methods of connecting our population dynamic model, eqn (1),
 with a diffusion equation and hence with an equilibrium probability distribution of adult
 number: the Ito and the Stratonovich. Both methods are applicable only when stochastic
 variation appears in parameters that are linear functions in the original model. In our case,
 these are parameters D and X. For a general discussion of Ito and Stratonovich calculi see
 Turelli (1977) and Roughgarden (1979, p. 379). For the moment, we shall deal exclusively
 with the Ito calculus.

 Stochastic variation in death rate among adults

 Assuming that D is subject to fluctuations of the white noise type, we obtain the
 stochastic differential equation

 dA/dt = A[X exp (-CA) - (D + aR(t))] (2)

 where R (t) is standard white noise and a > 0 is a parameter measuring the amplitude of the
 fluctuations. To obtain a steady state probability distribution of adult number we used the
 distribution

 K m[
 f(A) =-exp 2f-dA (3)

 v v
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 based on the Kolmogorov equation (see Roughgarden 1979, p. 69, Crow & Kimura 1970,
 p. 371 and May 1973, p. 114 for a review). For the Ito calculus with D stochastic, the
 mean, m, is the deterministic analogue of eqn (2) and the variance v, is A2 a2. K is a
 normalization constant. Substituting m and v into eqn (3) it can be shown (see Appendix
 for details) that the approximate steady state probability distribution is

 f(A) = K[A](2(X-D)/2)-2 exp [-[2C(D -X)/a2 log (D/X)]A]. (4)

 This equilibrium density function is a gamma distribution provided

 a2 < 2(X-D). (5)

 K is the normalization constant making the integrated probability unity. The expectation
 off(A) is

 C 2(X- D)

 and the variance off(A) is

 V(A [ a2(log(X/D))2 2(X- D)- 2 (7)
 = C2 ] 4(X- D)2

 Stochastic variation in recruitment rate

 Assuming that X is subject to stochastic fluctuations we can write

 dA/dt = A[(X + oR(t)) exp (-CA) - D] (8)

 where R (t) is standard white noise and a > 0 is a parameter measuring the amplitude of the
 fluctuations. To obtain a steady state distribution, we again used eqn (3) but with the mean
 m = XA exp (-CA) - AD and the variance v = A2 a2 exp (-2CA), so that we obtained the
 steady-state probability distribution

 f(A) = K[A](2(X-D)/2)--2 exp {-[[2C(X-- D - 2 log (X/D))]/o2 log (X/D)] A} (9)

 which is an approximation to the exact distribution arising from the above model (see
 Appendix). K is the constant that makes the integrated probability equal to one. The
 expectation off(A) is

 M(A) [log (XD) 2(XD)] a 1
 L C [ 2(X- D - 2 log (X/D))10)

 and the variance off(A) is

 V(A) [2 (log (X/D))2 [ 2(X-D)-2
 4[ DC2 J 4(X- D - 02 log (X/D))2]

 This equilibrium density function is also a gamma distribution, however, to have a positive
 mean and variance off(A) we must have

 a2 < min (2(X- D), (X- D)/log (X/D)). (12)
 The equilibrium probability distributions established by considering the Ito calculus with

 D or X stochastic are gamma density functions. They are different and we shall say more
 about these distributions in a later section. Our central concern, at this time, is that this

 excursion into theory provides us with a testable hypothesis, namely, that the variate, adult
 number in Tribolium, follows a gamma distribution.
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 EXPERIMENTAL OBSERVATIONS

 We shall examine thirteen observed frequency distributions of adult numbers when the
 species were fluctuating in the region of their equilibrium levels. These data were obtained
 from four separate publications. In general, the experiments were conducted as follows: At
 the outset, young adult beetles were paced in a vial containing a wheat flour medium.
 These vials were then maintained in incubators for a specified time interval (14 or 30 days)
 after which the cultures were censused. The larvae, pupae, and adults were counted and all
 living stages were returned to fresh medium. This 'census-incubation-census' routine was
 then repeated for 11-21 years. The recorded adult numbers for the individual replicates,

 after the steady-state was achieved, were used to generate the frequncy distributions.
 Standard Tribolium culturing techniques were used in each study, however, some
 differences in laboratory procedures were employed. A description of the latter is beyond
 the scope of this note and readers are referred to the original data sources for specific
 details.

 Statistical method

 Our procedure to check on the validity of the gamma was as follows: The random
 variable adult number A is said to be distributed as the gamma distribution (Feller 1966) if
 its density is

 f(A;a, ) - ( 1/F(a + 1) +1) A a exp (-A /) 0 <A <oo (13)
 = 0 elsewhere.

 This family of distributions has the two parameters

 P= a2/1 (14)

 a-= (/P)- 1 (15)

 where ,t and a2 are the expected mean and variance of adult numbers. The parameters were
 estimated using the method of maximum likelihood (Johnson & Kotz 1970, p. 189). The
 expected numbers were calculated using the gamma distribution with the parameters set
 equal to their estimated values. The chi-square test of goodness-of-fit was employed to
 make a comparison between the actual and the expected number of observations. Class
 intervals which had expected numbers less than one were not included in the analysis to
 avoid inflating the test statistic (Ostle 1963). All statistical tests were made at the 0.01
 level of probability.

 Data of Moffa & Costantino (1977)
 Adult census data were collected at 2 week intervals for 68 weeks on thirty-seven

 cultures of T. castaneum initiated with twenty adults (Fig. 1). It is the adult data from
 week 20 to week 68 (861 observations) that we suggest may be characterized by the
 gamma distribution. In Fig. 2, the smooth curve is the gamma distribution with the
 parameters obtained from the maximum likelihood procedure. The critical chi-square value
 which must be exceeded to reject the gamma at the 0-01 level of probability is 37-6. The
 calculated chi-square value, based on twenty-three class intervals (Fig. 2), was 18-9.
 Therefore, the data of Moffa & Costantino (1977) support the hypothesis of characterizing
 the steady state probability distribution of adult numbers in continuously growing
 populations of T. castaneum as a gamma distribution.
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 FIG. 1. The number of times that particular adult numbers were recorded for thirty-seven
 cultures of T. castaneum observed by Moffa & Costantino (1977) during the intervals 0-18

 weeks (0) and 20-68 weeks (a).
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 FIG. 2. The grouped frequency distribution of the adult numbers from weeks 20-68 recorded by
 Moffa & Costantino (1977). The smooth curve is the gamma density function with parameters

 (ac, p) obtained by the method of maximum likelihood.

 Data of Park (1954) published in Leslie (1962)
 Professor Park provided Leslie with data on T. confusum and T. castaneum for his

 treatment III (29 ?C, 70 RH) and his treatment V (24 ?C, 70 RH) (Park 1954). The
 observed frequency distributions of Park together with the predictions from Leslie's model
 are given in Table 9 of Leslie (1962). The four grouped frequency distributions were based
 on adult numbers recorded at day 360 onward to day 720 at 30 day intervals.
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 672  Equilibrium distributions

 The observed frequency histograms for these two species cultured at 24 ?C and 29 ?C
 are presented in Figs 3(a)-(d). The smooth curves are the gamma distributions with the
 parameters set equal to their maximum likelihood estimated values. In both data sets for T.
 confusum, the hypothesis that the data fit a gamma distribution was accepted. For T.
 castaneum cultured at 24 ?C the hypothesis was also accepted, however, at 29 ?C the
 hypothesis of a gamma distribution was rejected.

 In Figs 3(e) and (f), the computed gamma distributions reveal that for both species the
 mean adult number was higher at 29 ?C than at 24 ?C and that the variance of the
 distributions was larger at the higher temperature. We shall suggest an interpretation of
 these data in the next section.
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 FIG. 3. Observed grouped frequency distributions of Park (1954) published in Leslie (1962)
 together with the expected gamma distributions: T. confusum cultured at (a) 24 ?C and (c)
 29 ?C and T. castaneum cultured at (b) 24 ?C and (d) 29 ?C. The computed gamma density
 functions for T. confusum are sketched in (e) and for T. castaneum in (f). N is the number of
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 Data of Park, Leslie & Mertz (1964)
 Four genetically different strains of T. confusum and four genetic strains of T.

 castaneum single species cultures were maintained for 870 days. Our data source was the
 grouped frequency distributions of the adult numbers from day 360 onward which were
 presented in Appendix Table N in the original publication.

 The observed and gamma expected distributions for the four strains of T. confusum are
 presented in Figs 4(a)-(d). For strains 2 and 4, the gamma was accepted at the 0.01 level
 of probability. For strains 1 and 3 the gamma hypothesis was rejected. Figure 4(e) is a
 composite illustration of the four computed gamma distributions. We shall discuss these
 data in the next section.
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 FIG. 4. Tribolium confusum. Observed grouped frequency distributions published in Park, Leslie
 & Mertz (1964) together with the expected gamma distributions. The gamma densities of all four

 strains are drawn in (e). N is the number of observations.
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 For the T. castaneum strains, the observed and expected distributions are sketched in
 Figs 5(a)-(d). For strains 3 and 4 the gamma hypothesis was accepted. In the cases of
 strains 1 and 2, this hypothesis was rejected. The composite illustration of the computed
 gamma distributions presented in Fig. 5(e) shall be discussed in the next section.

 BIOLOGICAL INTERPRETATION OF STEADY STATE DISTRIBUTIONS

 The incorporation of stochasticity into the deterministic Tribolium population growth
 model (1) was mathematically tractable and yielded a gamma steady-state probability
 distribution with the mean and variance defined in terms of X, C, D and a2. Our objective
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 FIG. 5. Tribolium castaneum. Observed grouped frequency distributions published in Park,
 Leslie & Mertz (1964) together with the expected gamma distributions. The gamma densities of

 all four strains are drawn in (e). N is the numberof observations.
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 now is to identify the biological properties of the gamma density function, with D or X
 stochastic, and thereby suggest an interpretation of the Tribolium data.

 Stochastic variation in death rate among adults

 The steady-state distribution of adults, f(A), with D stochastic is given in eqn (4). The
 expectation off(A) (eqn 6) can be increased in several ways: (i) by an increase in X, the
 number of pupae produced per parent, (ii) by a decrease in C, the probability of
 cannibalism, (iii) by a decrease in D, the death rate among adults, or (iv) by a decrease in
 a2, the variability of the random element. This latter observation is consistent with May's
 (1973) finding that white noise introduced into the carrying capacity term of the logistic
 model results in a reduction of the average population size. On reflection, these are all
 plausible effects on the mean value off(A) (see Fig. 6).

 The variance off(A) is also quite informative. Unless X is very large relative to D, a
 decrease in X decreases the variance. As D or C decrease, the variance off(A) increases.
 Some findings are not intuitively obvious. The variance off(A), eqn (7), is a quadratic
 function of the stochastic variance so that an increase in a2 leads to the anticipated
 increase in the variance off(A) for a2 < (X - D). For values of a2 > (X - D), the
 variance actually decreases. Furthermore the steady-state distribution is gamma for 0 < a2
 < (X- D); however, at 2 = (X - D),f(A) is a special case of the gamma, namely, an
 exponential distribution (Fig. 6, see curve #2). Stochastic variation at or beyond 2(X - D)
 yields no steady-state distribution.

 To examine the steady-state distribution generated by our population growth model, we
 did a Monte Carlo simulation using the discrete time analogue of eqn (1), namely,

 At,, = [ + X( - C)A - D]At (16)

 0-20

 \

 0-15 -

 0'10 -

 A At Ao A* A/Ao

 FIG. 6. Gamma equilibrium probability distributions for adult number, A, whose dynamics are
 described by eqn (1) with a stochastic component associated with the death-rate among adults.
 The distributions are displayed as the ratio of adult number to the deterministic equilibrium adult
 number, A/Ao. The parameters for curve #1 are X = 0.2, C = 0-044, D = 0. 1 and the death rate
 variance a2 = 0.05. The expectation off(A) has been reduced to 0.75 A0. Curve #2, with the
 same numerical values as #1 except that the variance is increased to a2 = 0-1, shows a further
 reduction in the mean value to 0.50 Ao and is a special case yielding the exponential density.
 Curve #3 is identical to #1 except that the number of pupae per parent is increased from X = 0.2
 to X = 0-4. The expectation off(A) is increased as compared to the deterministic equilibrium

 number of curve #1, i.e. 1.37 A,.
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 FIG. 7. Frequency distributions generated by the numerical analysis of eqn (16) with C = 0-014,
 X = 0.71 and D randomly chosen from a normal distribution with mean and variance (0-35,
 0.05) in #1 and (0-35, 0.01) in #2. The smooth curve gamma distributions were calculated with

 the parameters (a, ft) set equal to their sample estimates.

 and allowed the death rate parameter D to be randomly chosen from a normal distribution
 with specified mean and variance. For each numerical example, 10 000 iterations of eqn
 (16) were performed and a frequency distribution of the numerically generated adult
 numbers was computed beginning with iteration 100, so that each distribution was based
 on 9901 'observations'.

 In all of the many numerical examples we have evaluated, the computed frequency
 distribution was gamma. (Two typical examples are presented in Fig. 7.) In addition, the
 pattern of change in the mean and variance off(A) was consistent with the derived gamma
 (eqns 6 and 7): as the stochastic variance, a2, decreased (from 0.05 to 0.01) the mean of
 f(A) increased (from 46.5 to 49-4) and the variance off(A) decreased (from 305.6 to
 58-5). These results indicate that although the derivation of the gamma distribution (4)
 was approximate, it is accurate and essentially correct.

 We shall now examine the observed Tribolium data of Park (1954) published in Leslie
 (1962). As noted in Figs 3(e)-(f), the observed mean and variance of the adult
 distributions for both species increased when cultured at 29 ?C as compared to 24 ?C.
 The model suggests several explanations: first, a decrease in the probability of the adult
 inhibition of the immatures, second, a decrease in the death rate among adults or third, an
 increase in the rate that pupae are produced per parent at the higher temperature. Leslie
 (1962, p. 8) pointed out that the mean length of time from egg to adult is approximately
 twice as long as 24 ?C than at 29 ?C. This observation is consistent with the third
 explanation.

 The observed gamma steady state distributions for the data of Park, Leslie & Mertz
 (1964) reflect the considerable differences that exist among these genetic strains of T.
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 confusum and T. castaneum. The authors of that study seem quite certain that
 cannibalism, C, is an important characteristic for predicting adult densities. In general, for
 T. confusum strains 3 and 4 were much more cannibalistic than strains 1 and 2 (Park,
 Leslie & Mertz, p. 150). Our interpretation of the distributions for T. confusum (Fig. 4(e)) is
 as follows: (i) stochasticity in X or D is present with a2 < (X- D) which yields a gamma
 density, and (ii) the probabilities of cannibalism among the four strains are C4 > C3 > C2
 > Cl. The model predicts that the mean of adults will be A* > A' > A' > A* and that
 the variances of adult numbers will be V1 > V2 > V3 > V4. These qualitative statements
 agree with the experimental data.

 The equilibrium distributions for the T. castaneum data (Fig. 5(e)) may be interpreted as
 follows: (i) a2 < (X- D) as before, and (ii) the probabilities of cannibalism (from Park,
 Leslie & Mertz 1964, p. 150) among the strains are C, > C4 > C2 > C3. For the mean
 number of adults, the model predicts that A' > A* > A' > A*. The qualitative agreement
 between the theory and data is correct for strains 3, 2 and 4 but is completely wrong for
 strain 1 which had the largest mean number of adults and not the smallest as predicted.
 The model also predicts that the variances of adult numbers will be V3 > V2 > V4 > V1.
 Strain 1 did not have the smallest observed variance but the largest followed by strains 2, 3
 and 4 in that order. A single biological parameter is not sufficient to explain these data. For
 example, while strain 1 does have a high C value, in addition, it has maximal fecundity and
 maximal fertility when compared to the other strains (Park, Mertz & Petrusewicz 1961).
 The equilibrium distribution of strain 1 may be a consequence of high C, high X (number of
 pupae produced per parent) and moderately low D (death rate).

 Stochastic variation in recruitment rate

 When the rate that pupae are produced per parent, X, is stochastic the situation is more
 complex than when D is stochastic. However, the parameter C plays the same role in both
 cases; consequently, the previous interpretation of the Tribolium data invoking C is
 also appropriate for X stochastic and will not be repeated.

 The mean and variance off(A) with X stochastic (eqns 10 and 11) are similar to those
 when D is stochastic (eqns 6 and 7) except for the term a2 log (X/D) that appears in the
 denominator of both the mean and variance. Consequently, our analysis of the family of
 distributions with X stochastic will focus on the impact of the stochastic element, a2, on the

 mean, M(A), and the variance, V(A), of the steady state distribution for four magnitudes
 of the ratio X/D: (i) 1 < X/D < /e. The ratio of pupal production to adult mortality is
 slightly greater than unity. This case is the same as D stochastic. M(A) is a monotonically
 decreasing function of the stochastic variance and V(A) is a quadratic function. (ii) X/D =
 Ve. In this case, V(A) is a monotonically increasing function of the stochastic variance
 and at a2 = (X - D), f(A) is an exponential distribution. The mean is unchanged by the
 magnitude of a2. (iii) /e < X/D < e. The ratio of pupal production to mortality is
 considerably larger now. Perhaps surprisingly, the introduction of stochastic variance in X
 actually increases the mean number of adults. V(A) is a monotonically increasing
 function of (2. The distribution again is exponential at a2 = (X - D), however, a new
 lower limit on the magnitude of the stochastic variance is established at (X- D)/log (X/
 D), rather than at 2(X - D), (note eqn 12). For a2 beyond this boundary no distribution is
 expected. (iv) X/D > e. If pupae are produced at rates greater than or equal to 2.7 times
 adult mortality, the mean and variance both increase with the introduction of stochasticity
 in X. Only a gamma distribution is expected (no exponential) and the upper limit on
 stochastic variance is (X- D)/log (X- D). Beyond this point no distribution is realized.
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 Ito and Stratonovich calculi

 In the evaluation of the stochastic differential equations of population growth (2) and
 (8) we used the Ito calculus. When we used the Stratonovich calculus the steady-state
 distribution was still gamma, but the conditions for its existence were quite different. As an
 example, if the parameter D is subject to white noise we can write eqn (2). For the
 Stratonovich calculus, the mean is m = XA exp (-CA) - DA + (a2/2)A and the variance
 is V= A 2 2 which gives us the exact probability distribution

 00

 f(A) - K[A](2(x-D)/'2 exp [(2X/a2) (-CA)n/nn!l. (17)
 n=l

 This gamma density is to be compared to the gamma given in eqn (A1) in the Appendix.
 Using the approximation in (A4) the steady state distribution is

 f(A) = K[A](2(X-D)/2)- 1 exp [-[2C(D -X)/2 log (D/X)]A]. (18)

 This density is to be compared to eqn (4). Both are gamma densities, however, the density
 in (18) exists provided X > D; there is no requirement on the relationship among a2, X and
 D. Recall that for the Ito calculus this condition was a2 < 2(X - D). From (18) we obtain
 the stationary expected adult number to be

 M(A) = log (X/D)/C (19)

 and the variance off(A) is

 V(A) = (lo(X/2 2(X- (20) C2 ^ l2(X-D)_

 Similar qualitative differences to those that we have obtained from eqn (2) with these
 two calculi have been noted by Feldman & Roughgarden (1975) for the logistic equation
 in a form proposed by May (1973) with stochastic variation in the carrying capacity term,
 k0. The stationary probability density for population size was, as in our case, gamma for
 both calculi. However, the existence condition for the Ito calculus was a2 < 2k0, whereas,
 for the Stratonovich calculus the density always existed.

 The question of which stochastic calculus is preferable to model population growth in
 Tribolium is a difficult one. Feldman & Roughgarden (1975) suggested that an important
 factor should be the meaning associated with our eqns (2) and (8). Brauman (1979) has
 recently proposed that either calculi can be used as long as the same method is employed
 in the entire analysis including the estimation of the parameters. In our case, the estimation
 of D must be examined to correctly interpret the conclusions of these calculi. For the Ito
 method, representing the expected value by E,

 E[dA (t)/dt = A (t) X e-CA- DA (t)

 and D, (subscript I for Ito) can be estimated using

 D- = E[toA (y)X e-CA(Y) dy - A(t) + A (O)/E[ ftoA (y) dy]. (21)

 For the Stratonovich method,

 2E
 E[dA (t)/dt] - A (t) Xe-A(t) -DA (t) + -A (t)

 2
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 and Ds (subscript S for Stratonovich) is

 Ds = Di + u2/2. (22)

 As t -, oo the asymptotic distribution of adult numbers for the Ito and Stratonovich
 methods are the same when D is defined as in (22) using the exact distributions in (A1)
 and (17).

 Concluding comments

 The gamma distribution may be of widespread interest to population ecologists. In
 general, any model of the form

 dN/dt = N[b exp (-cN) - d]

 where b = birth rate (can include survival to maturity), d = death rate, c = parameter
 which specifies the intensity with which population size lowers the birth rate and N =
 population size (reproductives) will yield a gamma distribution if either the death rate or
 the birth rate is made stochastic. May (1973) has shown that stochasticity in the popular
 logistic model of population growth also yields a gamma steady-state distribution. Unlike a
 symmetrical distribution, the gamma is skewed to the right-away from extinction and
 towards larger population size.

 The Tribolium data, in general, supported the hypothesis of characterizing the
 steady-state distribution of adult numbers in continuously growing populations as a
 gamma distribution. On the other hand, several of the observed distributions did not fit the
 gamma so that alternative models do warrant study. In this regard, the time-series
 information present in these data but which was not available to us in the published work
 of Leslie (1962) and Park, Leslie & Mertz (1964) may be of value.

 Finally, it should be pointed out that the observed frequency distributions do not allow
 us to distinguish between X stochastic or D stochastic; in either case, the theoretical
 prediction of f(A) is a gamma density function. Nor can we obtain estimates of the
 number of pupae produced per parent, the death rate among adults, or the adult inhibition
 of immatures from the observed distributions. However, the theoretical statement off(A)
 does allow for an interpretation of the observed distributions in terms of plausible
 biological entities and, perhaps more importantly, we can now make predictions
 concerning the steady state of single species cultures.
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 APPENDIX

 In this appendix we derive the approximate steady-state probability distributions given in
 eqns (4) and (9) in the text.
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 For the Ito calculus with D stochastic, substituting the mean m = XA exp (-CA) - AD
 and the variance v = A2 a2 into eqn (3), we have

 K 2

 f(A) = A exp2 [X f (exp (-C)A)dA - D f (/A) dA] .

 Now we note that

 00

 X[exp (-CA)/A] dA =log A + (-CA)"/nn!
 n=l

 which gives us the exact probability distribution

 00

 f(A)=K[A](2(x-D)/?2)-2 exp [(2X/a2) Y (-CA)n/nn!l. (Al)
 n=l

 The series in (Al) was approximated by substituting A* = log (X/D)/C into the higher
 order terms of the series to obtain

 00

 Y (-CA)nnn! -CA[l + log (D/X)/2 2! + (log (D/X))2/3 3! + .... (A2)
 n=l

 The series enclosed by brackets in (A2) is nearly

 [(D/X) - l]/log (D/X) = 1 + log (D/X)/2! + (log (D/X))2/3! + .. (A3)

 Substitution of (A3) into (A2) yields

 o00

 Y (-CA)n/nn! --CA[(D/X) - l]/log (DX). (A4)
 n=l

 The steady state probability distribution in (Al), using the approximation in (A4), yields
 the distribution given in eqn (4).

 For the Ito calculus with X stochastic, substituting the mean m = XA exp (-CA) - AD
 and the variance v = A2 a2 exp (-2CA) into eqn (3) we have

 K exp (2CA) 2
 f(A) = A2 exp 2 [Xf (exp (CA)/A) dA - D (exp (2CA)/A) dA] . (A5)

 In this case we note that

 00

 J[exp (CA)/A] dA = log A + i (CA)n/nn! (A6)
 n=l

 and

 00

 [exp (2CA)/A] dA = logA + i (2CA)n/nn! (A7)
 n=l

 which gives us the exact probability distribution

 [ 00 00

 f(A) = K[A](2(x-D)/2)-2 exp (2X/a2) Y (CA)/nn! - (2D/a2) y (2CA)n/nn! + 2CA
 n=l n=l

 (A8)
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 The two series terms in (A8) were approximated, as in eqn (A1), by substituting A* into
 the higher order terms to obtain expressions similar to eqns (A2) and (A3). For the first
 integral we have

 f(exp (CA)/A)dA logA + CA [(X/D) - 1/log (X/D). (A9)

 and for the second integral

 f (exp (2CA)/A) dA logA + CA[(X/D)2 - 1/log (X/D). (A10)

 Substitution of (A9) and (A10) into (A8) gives the approximate steady state distribution in
 eqn (9).
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