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Motivated by the genetic hypothesis that natural selection results in the maximization of the equilibrium population 
size, we quantified this latter equilibrium for laboratory populations of the flour beetle Tribolium castaneum, using 
the gamma probability density function. Gamma density functions were fitted to adult numbers for each of the experi- 
mental treatments that were started with frequencies of the corn oil sensitive (cos) allele in the range 0-1 at intervals 
of 0.1. The gamma density function adequately described all observed distributions. However, contrary to theory, 
statistical comparisons of the fitted distribution indicate that the polymorphic populations did not converge to the 
same identical distribution and that the polymorphic populations are intermediate in population size to the two 
homozygous gro ps. The need for a stochastic theory that combines both population size and genetic selection is discussed. Y 4 / V 
JKey words: natural selection, Tribolium, gamma distribution, maximum population size, stationary distribution, 
stochastic differential equation, dochastic population model. 

DESHARNAIS, R. A., DENNIS, B., et COSTANTINO, R. F. 1990. Genetic analysis of a population of Tribolium. IX. Maxi- 
mization of population size and the concept of a stochastic equilibrium. Genome, 33 : 571-580. 

Motives par l'hypothkse gknetique que la selection naturelle conduit a une maximisation de l'kquilibre de la densite 
d'une population, nous avons quantifie cet equilibre chez des populations d'elevage en laboratoire de Tribolium casta- 
neum, cet insecte des farines, en utilisant la fonction gamma de probabilitk de densite. Les fonctions gamma de densite 
ont ete appliquees, dans chacun des traitements, aux nombres d'adultes qui ont debut6 avec des frkquences de sensibi- 
lite a l'huile de mai's (cos) de 0 a 1, avec intervalles de 0,l. La fonction gamma de densite a dkcrit adequatement toutes 
les distributions observees. Toutefois, contrairement a la theorie, les comparaisons statistiques des distributions con- 
cordantes indiquent que les populations polymorphes n'ont pas eu de convergence avec cette meme distribution iden- 
tique et, de plus, que ces populations polymorphes sont intermediaires en densites de populations entre les deux groupes 
homozygotes. La necessite de recourir a une theorie stochastique qui combinerait a la fois les densites de populations 
et la selection genetique est discutee. 

Mots cles : selection naturelle, Tribolium, distribution gamma, densite maximale des populations, distribution sta- 
tionnaire, equation differentielle stochastique, modkle stochastique de population. 

[Traduit par la revue] 

Introduction 
A classical result in the population genetic theory of 

natural selection is that the Malthusian rate of growth is 
expected to increase monotonically until it reaches a local 
maximum at genetic equilibrium (Fisher 1930; Wright 1935). 
A density-dependent version of this Fisher-Wright theorem 
asserts that an equilibrium allele frequency corresponds to 
a local "maximum equilibrium population size" (MacArthur 
1962; Anderson 197 1 ; Charleswort h 197 1 ; Roughgarden 
197 1 ; Leon and Charlesworth 1978). We recognize the 
limitations of the direct biological application of the latter 
result; nevertheless, one of the roles of a general theory is 
to stimulate new empirical research. In that spirit our objec- 
tive is formulated: to evaluate experimentally the maximiza- 
tion of population size hypothesis. 

In experiments with laboratory populations of the flour 
beetle Tribolium, adult abundances, even under controlled 
environmental conditions, fluctuate over time in an 
apparently random way (Leslie 1962). The equilibrium is 

stochastic; adult numbers are always changing. Recent work 
shows that the equilibrium can be quantified using a gamma 
probability density function for the stationary distribution 
of adult numbers (Costantino and Desharnais 1981; Dennis 
and Patil 1984; Desharnais and Costantino 1985; Dennis and 
Costantino 1988). Furthermore, statistical inferences for the 
gamma model from observed stationary distributions can 
be made, including estimation of parameters, testing 
goodness of fit, obtaining confidence intervals for param- 
eters, and testing to compare two gamma distributions 
(Dennis and Costantino 1988). 

In this paper, we examine the equilibrium size of popula- 
tions in which the initial allele frequencies, p(O), of a fitness- 
related physiological mutant are not equal to the globally 
stable equilibrium allele frequency, p*. From the single- 
locus theory of natural selection, we expect the genetic dise- 
quilibium, p(0) # p * ,  to be resolved as all populations 
initially segregating at this locus converge to the genetic equi- 
librium. Eventually, each of these populations will also reach 
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a stochastic equilibrium of adult numbers, called the popula- 
tion size equilibrium (Costantino and Desharnais 198 1). Our 
goal is to determine the effect of the nonequilibrium initial 
allele frequencies on the stationary distribution of adult 
numbers. Specifically, does convergence occur and is 
population size maximized at p ? 

Laboratory procedures 
The adult census numbers were obtained from the experiment 

of Moffa and Costantino (1977); readers should consult that source 
for specific details. Here we briefly comment on the laboratory 
procedures. Two genetically related strains of Tribolium castaneum 
Herbst were used. One strain was genetically heterogeneous wild 
type (Purdue Foundation) and the other, derived from the first 
by laboratory selection (Yamada and Bell 1969), was homozygous 
for the corn oil sensitive (cos) mutant (Costantino et al. 1967). 
Experimental lines were labelled using initial frequency of the cos 
allele. 

Genetic and demographic data were recorded for 11 experimental 
treatments in which the initial cos allele frequency ranged from 
0 to 1 in increments of 0.1. The initial genotypic arrays were con- 
structed from combinations of the +/+ and cos/cos homozygotes; 
each initial demographic array consisted of 10 newly emerged adults 
of each sex. Each population was maintained in a one-half-pint 
milk bottle with 20 g of corn oil media (90% flour, 5% dried 
brewer's yeast, and 5% corn oil by weight) in an unlighted 
incubator at 33 + 1 "C and 42 + 6% relative humidity. The cul- 
tures were censused and placed in fresh media every 2 weeks for 
68 weeks. At weeks 52 and 68, larvae were sampled and their 
genotypes determined with test crosses with cos/cos homozygotes. 
Additional genetic data were obtained from a separate but iden- 
tically designed experiment (Moffa and Costantino 1977). In this 
second experiment, the frequency of the cos allele was determined 
from independent replicates at weeks 2, 6, 12, and 16. 

In cultures segregating at the cos locus, allele frequencies quickly 
reached a mean (+SE) equilibrium of p = 0.25 k 0.03 (the 
median value was 0.28) and maintained this equilibrium throughout 
the experiment (Moffa and Costantino 1977). After a large initial 
increase followed by a decline, adult numbers settled into a sta- 
tionary pattern of stochastic fluctuations by week 20 (Moffa and 
Costantino 1977). The biweekly census data for adult numbers from 
week 20 to week 68 provided 25 observations per replicate. There 
were three replicate populations for each of the treatment with 
p(0) = 0.0, 0.1, 0.2, 0.3, and 0.4 and five replicate populations 
for each of the remaining treatments. One observation was lost 
in each of the p(0) = 0.0 and p(0) = 0.1 treatments as a result 
of errors in the recording of data. Both of the p(0) = 0.8 and 
p(0) = 0.9 treatments lost two replicate populations to disease dur- 
ing the first half of the experiment. It is the adult census data from 
week 20 to week 68 that are examined in this report. 

Stationary distribution model 
Demographic time scales 

Species of the genus Tribolium are cannibalistic: adults 
eat eggs, small larvae, pupae, and young adults; larvae eat 
eggs, pupae, and young adults (Park et al. 1965; Ho and 
Dawson 1966; Park et al. 1974; Craig 1986). These 
behavioral interactions can lead to stable demographic 
oscillations (Desharnais and Liu 1987). Indeed, in the exper- 
imental data, larval numbers generally display large 
amplitude oscillations, while for adult numbers it is often 
difficult to distinguish cyclic oscillations from random fluc- 
tuations. Recently, we suggested an analysis of this com- 
plex system of life-stage interactions using a separation of 
time scales approach, the dynamics of adult numbers occur- 
ring over a slow time scale and those of the immature age- 

classes over a fast time scale (Hastings 1987; Hastings and 
Costantino 1987; Costantino and Desharnais 1990). The 
main reason for the difference in time scales is that adults 
are so long-lived relative to the developmental interval. In 
this paper we make a slow time scale analysis of the adult 
population dynamics. The more general question of scal- 
ing as a modelling technique has recently been discussed by 
Segel (1988a, 1988b). 

Deterministic model 
An ordinary differential equation for the rate of change 

'in adult numbers, N(t), is 

where c is the per capita rate at which adults prevent a pupa 
or incompletely sclerotized adult from entering the adult 
population and b and F are, respectively, the density- 
independent rates of reproduction and adult mortality 
(Costantino and Desharnais 198 1 ; Desharnais and Costantino 
1982a, 1982b, 1983, 1985; Dennis and Patil 1984; Dennis 
and Costantino 1988). 

The dynamics of the adult recruitment model [I] are quite 
simple. If b > F, the equilibrium number of adults given 
by N(m) = [10g(b)/~)]/c is globally stable. If b I F, the 
population will go extinct. In the neighborhood of N(m), 
the rate of approach to equilibrium is given by the eigen- 
value X = F log(~/b) .  

The familiar logistic model can serve as an approxima- 
tion to the flour beetle model [l] by expanding the per capita 
growth rate, b exp[- cN(t)] - F, in a Taylor series around 
the stable equilibrium N(m), and discarding second-order 
and higher terms (Dennis and Patil 1984; Dennis and 
Costantino 1988). The logistic approximation is 

[2] dN(t) = N(t)[A - BN(t)]dt 
where A = F log (b /~ )  and B = c ~ .  The equilibrium, N(m), 
in this logistic is a balance of recruitment, cannibalism, and 
mortality. 

Stochastic model 
The stochastic version of model [2] that we consider is 

Here d W(t) has a normal distribution with mean zero and 
variance dt, and a is a positive constant. The model with 
its "white noise'' represents the effects of unpredictable fluc- 
tuations in the per capita growth rate of the population. The 
differential dN(t) is formally defined in terms of either an 
Ito or a Stratonovich stochastic integral (Horsthemke and 
Lefever 1984). We will use the Ito interpretation of [3]. 

If the constant a in [3] is zero, we recover the logistic adult 
recruitment model [2]; however, with 0 < a < (2A)'12, as 
t becomes large the distribution for N(t) approaches a 
limiting stationary gamma distribution with probability den- 
sity function 

where 0 < x < m, a = ( 2 ~ / a ~ )  - 1, and B = 2 ~ / a ~  
(Leigh 1968; Dennis and Costantino 1988). The parameters 
a and B are positive. If a > (2A)'12 (implying a < O), 
extinction occurs eventually. 

Statistical inferences 
We used the following statistical procedures for estimating 
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DESHARNAIS ET AL. 573 

TABLE 1. Observed number of adults (y , )  and class interval 
boundaries (s,) for the cultures segregating at the cos locus 

Observed (y,)' 
Left Right 
( s , ~ )  (s,) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Total 74 75 75 125 125 125 125 93 94 

'For p(0) = 0.1, 0.2, 0.3, and 0.4, there were three replicate cultures; for the 
remaining initial cos allele frequencies there were five replicate cultures. For 
p(0) = 0.1, one observation was lost as a result of a data recording error. For both 
the p(0) = 0.8 and 0.9 treatments, two cultures were lost to disease. 

the parameters a and fl and for conducting hypothesis tests 
concerning the stationary gamma distributions. Dennis and 
Costantino (1988) give further technical details, discuss the 
merits of using grouped data, and present a justification for 
using these procedures when the observations form an 
autocorrelated time series. 

We computed maximum likelihood estimates of a and P 
using a multinomial likelihood function. Let q, denote the 
probability that an observation falls within the population 
size interval (S,- ,Sj), where 0 = So < S1 < . . . < Sm - 
< Sm = w ,  and let yj denote the observed frequency 
count of observations in that interval. Under the gamma 
hypothesis, 
151 qj(a,P) = F(sj) - F(sj-1) 
where F(s) is .the gamma cumulative distribution function 
(area under f ( x )  between 0 and s). If the observations are 
spaced far enough apart in time, then the probability of 
obtaining the entire data set y l ,  y2, . . . , Ym is approximately 
given by the multinomial likelihood function 

Here n represents the total number of observations: 
n = C y,. The maximum likelihood estimates of a and P 
are the values that maximize the probability [6]. These values 
can be found by performing a nonlinear least squares regres- 
sion (Jennrich and Moore 1975). The regression uses the 

TABLE 2. Parameter estimates for the stationary distributions for 
the cultures segregating at the cos locus 

Initial allele 
B frequency a a r a 

v1 v2 v12 

'Each entry x 

values y l ,  y2, . . ., ym as observations on the dependent 
variable, and nql(a,P), nq2(a,P), . . . , nqm(a,P), the expected 
values of the yj's, as the model to be fit. The nonlinear 
regression must be "iteratively reweighted"; that is, weights 
of [nqj(a,P)] -' must be computed with updated values of 
a and fl at every iteration. After convergence, the resulting 
values of a and fl are not least squares estimates; the 
(Gauss-Newton) least squares algorithm has been "tricked" 
into maximizing the likelihood function [6]. 

The maximum likelihood estimates have an asymptotic 
multivariate normal distribution as n -- w (see, for exam- 
ple, Bishop et al. 1975, p. 509). The inverse of the variance- 
covariance matrix is obtained by differentiating the log 
likelihood and taking the expected values of the second 
derivatives. The variance-covariance matrix is 

where 

j =  1 \ / 

with qj = q,(a,P) as defined in [5]. The elements in C(a,P) 
are estimated by substituting the maximum likelihood 
estimates of a and p; the partial derivatives in [8] can be 
computed numerically. The square roots of the diagonal 
elements in C(a,P) provide standard errors for a and P. 

Testing the goodness of fit of the gamma distribution was 
accomplished using the following Pearson x2 test. The 
maximum likelihood estimates & and fi are used to calculate 
the Pearson X 2  statistic given b y  

If the iteratively reweighted least squares algorithm is used 
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Number of Adults 
FIG. 1. The observed frequency distributions (histograms) and fitted gamma density functions [4] for the nine experimental treatments 

that were initially segregating at the cos locus. The test statistics (X2), degrees of freedom (do,  and probability levels ( P )  are given 
for the goodness of fit tests. 

parameter estimates from the first gamma distribution and 
let h2 and B2 be the estimates from the second distribution. 
The null hypothesis is Ho: (a l ,  Dl)' = (a2,D2)', i.e., both 
distributions have identical parameters, while the alternative 
hypothesis is H1 : (al  ,Dl) ' # (a2,D2) ' . Since (& ,Dl) ' and 
(ii2,D2)' both converge in distribution to multivariate nor- 
mals, the difference 

will also converge to a multivariate normal with mean vec- 
tor (a  ,Dl) ' and variance-covariance matrix C(a ,Dl) + 
C(a2,D2). The statistic 

[ l l ]  g2 = 8'[E(ii1,B1) + ~ ( & ~ , 8 3 1  - l a  

Number of Adults 
FIG. 2. A comparison of the nine gamma distributions fitted 

independently to each of the polymorphic groups (dotted curves) 
versus the single best fit gamma distribution for all the populations 
combined (but not pooled). The test statistic ( c 2 ) ,  degrees of 
freedom (do,  and probability level ( P )  are given for a test of the 
null hypothesis that all these distributions are the same. 

to obtain parameter estimates, X 2  is the final value (at con- 
vergence) of the weighted residual sum of squares. Under 
the null hypothesis that the gamma model fits, X 2  has a 
large-sample X 2  distribution with rn - 3 degrees of freedom. 

The multivariate normal distribution of the maximum 
likelihood estimates was used for comparing parameters 
from two gamma distributions. Let h l  and Dl represent the 

can be used to test Ho, where 8, C(ii1,i!I1), and C(&~,D~)  are 
computed from [7] using the maximum likelihood estimates. 
Under the null hypothesis, g2 has a (large sample) X 2  

distribution with two degrees of freedom. 

Observed stationary distributions 
Cultures segregating at the cos locus 

The observed numbers of adults, in the region of the 
steady state, are presented in Table 1 for the nine experi- 
mental treatments that were initially segregating at the cos 
locus. We computed the maximum likelihood (ML) estimates 
for the parameters a and D in the gamma model [4] using 
these grouped data and the multinomial likelihood function 
[6]. Goodness of fit was tested using the X 2  statistic [9] at 
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DESHARNAIS ET AL. 

Number of Adults 
FIG. 3. Pairwise comparisons of the fitted gamma distributions for the nonequilibrium polymorphic populations (continuous curves) 

versus the reference population with p(0) = 0.3 (broken curve). The test statistics (D~), degrees of freedom (df), and probability levels 
(P) are given for a test of the null hypothesis that the two distributions are the same. 

the 0.01 significance level. In every case, the null hypothe- 9 17 

sis that the gamma model fits these data was accepted. The 1141 G: = 2 z z y, log( " A ) 
observed distributions, fitted gamma density functions, and i = I  j = l  niqj(&i,Pi) 
test results are presented in Fig. 1. The ML estimates, & and 
D, their estimated variances, ^vl and iV2, and estimated 
covariance, Cl2, are given in Table 2. 

Did the nine test cultures converge to a common gamma 
(see Fig. 2)? We used a likelihood ratio test of Ho: one 
gamma versus H1: more than one gamma for the nine data 
sets (p(0) = 0.1, 0.2, . . . , 0.9). For the null hypothesis, one 
gamma was fitted simultaneously to the nine data sets (not 
pooled). We computed 

where y, is the frequency count in the jth abundance inter- 
val for the ith population and 

[13] q,(&,D) = 1 ( )  e x -  6x)dx 
r(&) 

Sj -  1 

for 0 = So < S1 < ... < S9 = 00. The maximum like- 
lihood estimates & = 5.43383 and D = 0.10798 minimize 
[12] (solid curve in Fig. 2). Under the alternative hypothe- 
sis of one or more of the a's, p's not equal, nine gammas 
were fitted separately to the nine data sets (dotted curves 
in Fig. 2). We computed 

where y, is the frequency count and &,Di are the maximum 
likelihood estimates of the ith population. The likelihood 
ratio test statistic of Ho vs. H1 is 

with 16 degrees of freedom (1 8 parameters estimated under 
H1 minus 2 parameters estimated under Ho). The null 
hypothesis of one common gamma is rejected. 

In .the deterministic genetic theory of natural selection if 
p(0) = p*, then the population is in genetic equilibrium; if 
p(0) f p*, then eventually p is expected to reach p'. In 
these data, to a rough approximation, p* ~ 0 . 3 ,  so the 
experimental cultures with that allele frequency were near 
genetic equilibrium at the beginning of the experiment and 
all nonequilibrium cultures should, eventually, be similar 
to these cultures. With respect to the dynamics of adult num- 
bers the p(0) = 0.3 treatment acts as a "reference popula- 
tion" (Desharnais and Costantino 1982b; Desharnais 1986). 
Did any of the nonequilibrium cultures converge to the sta- 
tionary distribution of adult numbers attained by the 
p(0) = 0.3 cultures? To answer this question we used the 
D~ test statistic [I 1] for the pairwise comparison of the 
gamma parameters for the p(0) = 0.3 treatment with the 
other eight treatments (Fig. 3). We accepted the null hypoth- 
esis at the 0.05 level of significance that the gammas for 
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TABLE 3. Observed number of adults ( y , )  and 
class interval boundaries (s , )  for the wild-type 

and sensitive populations 

Observed ( y , )  
Left Right 

(sj- I )  (s , )  Wilda sensitive 

Total 

'Three replicate cultures; one observation was lost as a 
result of  a da ta  recording error. 

b ~ i v e  replicate cultures. 

p(0) = 0.1,0.2,0.5,0.7, and 0.8 are equal to the p(0) = 0.3 
cultures. On the other hand, the null hypotheses for the 
p(0) = 0.4, 0.6, and 0.9 cultures were rejected. 

While the idea of a shared or common gamma for all nine 
cultures was not accepted using the G~ test statistic [15], the 
individual pairwise comparisons suggest that some con- 
vergence to a common stochastic equilibrium did occur 
(Fig. 3). Overall the polymorphic populations seem more 
alike than different. 

Wild-type and sensitive populations 
The observed stationary distributions for the wild-type 

@(0) = 0.0) and sensitive @(O) = 1.0) populations are 
given in Table 3. The observed histograms and fitted gamma 
density functions are sketched in Fig. 4. The parameters of 
the fitted gamma distributions are listed in Table 4. As with 
the test cultures, we accepted the null hypothesis that the 
gamma model fits these data at the 0.01 significance level. 

These strains have statistically different parameter values 
according to the D 2  test [l 11 (Fig. 4). Nevertheless, the 
distributions do overlap. Deterministic ecological-genetic 
theory predicts that the wild-type populations @(O) = 0.0) 
will attain a larger equilibrium population size than the sen- 
sitive populations @(O) = 1.0). The gamma distribution 
provides a way to refine this prediction. Consider two 
populations, N1 and N2, both subject to independent ran- 

dom fluctuations. Let fl(x) and f2(x) represent the sta- 
tionary probability density functions for N1 and N2. The 
probability that N1 exceeds N2 is given by 

where F2(x) is the cumulative distribution function for N2. 
Substituting the gamma density function [4] in [16] gives 

The integrals in [17] can be computed numerically. Using 
the ML estimates (Table 4) for the wild-type populations 
as al and Dl and for the sensitive populations as a2 and P2, 
the probability that adult numbers in a wild-type culture 
exceed the adult numbers in a sensitive culture was computed 
as 0.8666. Although it is clear that the wild-type popula- 
tions have higher densities of adults (Fig. 4), it is interest- 
ing to note that 13.34% of the time one would observe 
cos/cos cultures with larger numbers of adults. 

The fitted gamma density functions for each of the 
populations initially segregating at the cos locus were com- 
pared with the fitted gammas for the sensitive (cos/cos) and 
wild-type ( +/+ ) populations. In Fig. 5 we show the pair- 
wise comparisons of the gamma parameters for the 
p(0) = 1 .O (cos/cos) cultureswith the other nine treatments 
@(0) = 0.1, 0.2, 0.3, . . . , 0.9). Using the D 2  test statistic 
[l 11, we concluded that each polymorphic treatment differs 
from the sensitive population. In Fig. 6, we present similar 
pairwise comparisons with the p(0) = 0.0 ( + /+ ) distribu- 
tion. In this case, we rejected the null hypothesis at the 
0.05 level of probability for every treatment except for 
p(0) = 0.4. In general, the polymorphic cultures have 
gamma distributions that differ from the wild-type and sen- 
sitive populations. 

Maximization of population size 
Does the maximization theorem apply just to the under- 

lying deterministic equilibrium? Do the data support the 
hypothesis of maximization of point equilibrium abun- 
dances? The equilibrium from the deterministic model ([1] 
or [2]), N(w), can be written as a function of the gamma 
distribution parameters: 

The maxjmum likelihood 'estimate, given by f l (w)  = 
(&. + I)/@, has an approximate large-sample normal 
distribution with mean N(w) and variance 

v: (a. + 2(a. + 1)V12 
[19] V = +  - 

P P4 P3 
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DESHARNAIS ET AL. 

TABLE 4. Parameter estimates for the stationary distributions for the wild-type 
and sensitive populations 

B A a a Population a V I  v2 v12 

Wild type 7.0016 0.10209 1.26556 1.90457 2.34070 
Senstive 3.8884 0.11015 0.50263 1.53039 0.72561 

'Each entry x lo-' 

Number of Adults 
FIG. 4. The observed frequency distributions (histograms) and 

fitted gamma density functions [4] for the two experimental 
treatments that were homozygous at the cos locus. The test statistics 
(X2), degrees of freedom (df), and probability levels (P )  are given 
for the goodness of fit tests. The two fitted gamma distributions 
are compared in the lower panel. The test statistic ( D ~ ) ,  degrees 
of freedom (df), and probability level (P )  are given for a test of 
the null hypothesis that the two distributions are the same. 

where v1 2, v ~ ~ ,  and v12 are the elements of the large-sample 
variance-covariance matrix [7] for 6 and p (see Appendix 1). 
A test of Ho: Nl(-) = N2(-) versus HI: Nl(-) # N2(-) 
can be conducted using 

where Ni(-) and pi are N(-) in 1181 and V in 1191 
evaluated using the maximum likelihood estimates Gi and 
Bi. Under the null hypothesis W converges to the normal 
(0,l) distribution. 

In pairwise fashion, we compared the underlying point 
equilibria for the cultures initially segregating at the cos locus 
with the +/+ and cos/cos cultures and also with the "ref- 
erence population" of p(0) = 0.3 (Table 5). In comparisons 
with the +/+ treatment we rejected Ho in every case except 
for p(0) = 0.2 at the 0.05 level of significance. In com- 
parisons with the cos/cos treatment we rejected Ho for all 
initial allele frequencies except p(0) = 0.6 and 0.9. In com- 
parisons with the reference population we rejected Ho for 
p(0) = 0.6, 0.7, and 0.9; we accepted Ho for p(0) = 0.1, 
0.2, 0.4, 0.5, and 0.8. 

Finally, to emphasize the stochastic nature of these 
equilibria, we used [17] to make pairwise comparisons of 
the random variables for population size. For each treat- 
ment segregating at the cos locus, we computed the proba- 
bility that the population size will exceed that of the 
homozygous and reference populations (Table 6). Values 
near 0.5 indicate no tendency for a higher or lower popula- 
tion size. In comparison with the wild-type homozygotes, 
the probabilities for the polymorphic populations are con- 
sistently below 0.5; they range from 0.17 for p(0) = 0.6 to 
0.41 for p(0) = 0.4. In comparison with the sensitive 
homozygotes, the probabilities for the polymorphic popula- 
tions are consistently above 0.5; they range from 0.59 for 
p(0) = 0.6 to 0.82 for p(0) = 0.4. The reference popula- 
tion is intermediate; the probabilities range from 0.34 for 
p(0) = 0.6 to 0.61 for p(0) = 0.4. It is worth noting that 
none of these probabilities falls outside the range 0.15-0.85. 
In general, there is a significant overlap among all the sta- 
tionary distributions. 

Discussion 
According to the single-locus genetic theory of natural 

selection with density-dependent population growth, the 
(deterministic) equilibrium population size of the polymor- 
phic populations should be larger than either homozygote 
equilibrium. Furthermore, since the genetic equilibrium is 
globally stable, all populations initially segregating at the 
genetic locus should converge to the same equilibrium 
population size. Neither of these predictions was supported 
by the data. Overall, Tribolium populations segregating at 
the cos locus were intermediate in population size to the two 
homozygous groups. This result is true whether one uses the 
estimates of the deterministic equilibria (Table 5) or the 
probability comparisons for population size (Table 6). 
Among the polymorphic populations, there was a signifi- 
cant amount of heterogeneity for the estimated gamma den- 
sity functions (Fig. l), although on the whole, the polymor- 
phic populations are more alike than different when 
compared with the two homozygous distributions (Fig. 3 vs. 
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Number of Adults 
FIG. 5 .  Pairwise comparisons of the fitted gamma distributions for the polymorphic populations (continuous curves) versus the 

homozygous cos/cos population (broken curve). The test statistics (D2), degrees of freedom (df), and probability levels ( P )  are given 
for a test of the null hypothesis that the two distributions are the same. 

Number of Adults 
F I G .  6. Pairwise comparisons of the fitted gamma distributions for the polymorphic populations (continuous curves) versus the 

homozygous +/+ population (broken curves). The test statistics (D2), degrees of freedom (df), and probability levels ( P )  are given 
for a test of the null hypothesis that the two distributions are the same. 
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TABLE 5. Pairwise comparisons of deterministic point equilibria 

Test statistics, W, for pairwise comparisons 

p(0) ~ ( o o )  +_ f l  p(0) vs. wild type p(0) vs. sensitive p(0) vs. reference 

NOTE: N ( W )  + dp equals 78.378 + 3.928 for the wild-type populations and 44.380 & 2.400 for the 
sensitive populations. 

* P  < 0.05; **P < 0.01. 

TABLE 6. Probabilities of observing a greater population size than the wild-type, 
sensitive, and reference populations 

p(0) Prob(N > wild type) Prob(N > sensitive) Prob(N > reference) 

Figs. 5 and 6). Although there is little doubt that natural 
selection has affected the dynamics of population size, the 
maximization principle was not supported. 

What could account for these differences? Clearly, the 
theory is an oversimplification of any real biological sys- 
tem. The model ignores age structure, age-class interactions 
such as larvae eating eggs, and many of the other details 
that influence population dynamics in Tribolium (Hastings 
and Costantino 1987; Desharnais and Liu 1987; Costantino 
and Desharnais 1990). It is possible that the theory, while 
sufficiently general and robust to support the prediction of 
a gamma stationary density function, lacks sufficient detail 
to account for the influence of natural selection. On the 
other hand, we must point out that our stochastic model 
is for population size alone; it does not explicity include any 
genetic dynamics. The maximization prediction is based on 
a model that includes genetic and population size dynamics 
(Roughgarden 197 1 ; Charlesworth 197 I), but this model is 
deterministic. It may be the case that a stochastic model that 
combines both genetic and population size dynamics may 
yield new predictions that are in agreement with the experi- 
mental observations. 

The need for a combined stochastic theory of natural 
selection and population growth can be illustrated with a 
simple example. Consider two populations, Nl  and N2, 
which are subject to independent stochastic fluctuations. 
Assume that the first population is polymorphic and has 
gamma parameters al = 3 and pl = 0.01, and that the 
second population is homozygous and has gamma param- 
eters a 2  = 34 and P1 = 0.1. The deterministic equilibria 
are Nl(oo) = (al  + l)/P1 = 400 and N2(oo) = (a2 + 1)/ 
P2 = 350, and according to the theory, Nl(oo) > N2(oo). 

However, from [17] we compute Prob (Nl > N2) = 
0.3526. Even though the homozygous population has the 
smaller deterministic equilibrium, N2 will exceed Nl about 
65% of the time! Although this is a contrived example, it 
points out the need to reformulate the genetic maximiza- 
tion principle in the context of a stochastic model. 

Finally, one should not overlook a major success of the 
stochastic model: the prediction of a gamma stationary 
probability distribution for population size. For each of the 
11 experimental groups, the gamma distribution provided 
an adequate description of the variation in adult numbers. 
The present success of the gamma supports several previ- 
ous studies involving Tribolium in which the gamma was 
also a useful paradigm (Costantino and Desharnais 1981; 
Desharnais and Costantino 1985; Dennis and Costantino 
1988). Through the gamma stationary distribution, we can 
use variability of population size as yet another source of 
information about the population. 
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Appendix 1 
The underlying point equilibrium N(oo) can be written as a dif- 

ferentiable function of the gamma distribution parameters a and P: 

G
en

om
e 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

D
ep

os
ito

ry
 S

er
vi

ce
s 

Pr
og

ra
m

 o
n 

06
/0

7/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



580 GENOME, V(: 

The maximum likelihood estimate of N(m) becomes a function 
of the estimates of CY and 0: 

The distribution of (&,@I converges to a multivariate normal 
distribution with mean vector (a,@)' and variance-covariance 
matrix C(CY,@) given by [7] .  These facts allow use of the the "delta 
method," or the "method of staJistica1 differentials," to obtain 
the large sample distribution of N(m) (Rao 1973, p. 388). Let v12 
and v22 be the elements on the main diagonal of C(CY,@) (variance 
of & and of 0, respectively), and let v12 be the off-diagonal ele- 
ment (covariance of & and 0). The delta method arises through 
a Taylor series approximation of a function h(&$) near CY and 0. 
The main result is that the distribution of h(&,P) converges to a 
normal distribution with mean h(cy,P) and variance 

By calculating the indicated partial derivatives from [All and per- 
forming the indicated matrix multiplica_tions, the text expression 
[19] for th_e large sample variance of N(m) is obtained. 

Also if Nl(m) converges to a normal (Nl(m), V(oll,fl1)) distribu- 
tion, and N2(m) converges to a normal (N2(m), V(a2, P2)) 
distribution, then 

converges to a normal (N1(m) - N2(m), 1 )  distribution. Under 
the null hypothesis that N1(m) = N2(m), W has a large-sample 
normal (0 , l )  distribution. 
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