
Copyright 0 1989 by the Genetics Society of America 

NATURAL SELECTION AND DENSITY-DEPENDENT 
POPULATION GROWTH 

R. A. DESHARNAIS*” AND R. F. COSTANTINO’ 

*Department of Biology, Dalhousie University, Halfax, Nova Scotia, B3H 451, Canada, and +Department 
of Zoology, University of Rhode Island, Kingston, Rhode Island 02881 

Manuscript received November 4, 1982 
Revised copy accepted August 24, 1983 

ABSTRACT 

Natural selection was studied in the context of density-dependent population 
growth using a single locus, continuous time model for the rates of change of 
population size and allele frequency. The maximization principle of density- 
dependent selection was applied to a class of fitness expressions with explicit 
recruitment and mortality terms. Three general results were obtained: First, 
at low population densities, the genetic basis of selection is the difference 
between the mean recruitment rate and the mean mortality rate. Second, at 
densities much higher than the equilibrium population size, selection is ex- 
pected to act to minimize the mean mortality rate. Third, as the population 
approaches its equilibrium density, selection is predicted to maximize the ratio 
of the mean recruitment rate to the mean mortality rate. 

N the genetic model of natural selection in a sexually reproducing diploid I population with continuous time, we can describe the change in allele fre- 
quency at a single multiallelic autosomal locus and the change in population 
number, respectively, as (CROW and KIMURA 1970, p.191) 

dp i /d t=p i (Wi -W)  i =  1, 7 n  ( 1 4  

dN/dt = WN (lb) 

where p i  is the frequency of allele i, n is the number of alleles and N is the 
population size. The Wj represents the marginal fitness of the ith allele, and 
W is the average population fitness. With the usual assumptions of random 
mating, weak selection and Hardy-Weinberg genotypic frequencies, Wi and W 
are calculated using 

71 I1 II 

The genotypic fitness W, is defined as the contribution of an individual with 
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genotype i,j to the total population growth rate. The average fitness is equal 
to the Malthusian rate of population growth. One classical result, due to the 
works of FISHER (1930) and WRIGHT (1935), is that the average fitness of a 
population will increase monotonically until it reaches a local maximum at 
genetic equilibrium. If the equilibrium state is polymorphic for all n alleles, 
then the equilibrium fitness is a global maximum. A refinement of this result 
which accounts for deviations from Hardy-Weinberg genotypic proportions is 
given by KIMURA (1958). For an expository discussion of the continuous time 
model in population genetics see NAGYLAKI (1977, p. 79) and EWENS (1979, 
p. 48). 

In recent years, the expanding population size interpretation of this classical 
genetic model has been modified by writing the fitnesses of the different 
genotypes as a function of population size. One early example was based on 
the Verhulst-Pearl linear logistic equation of population growth (MACARTHUR 
1962; ANDERSON 197 1 ; ROUGHGARDEN 197 I), and another used the Michaelis- 
Menten equation in enzyme kinetics (CLARKE 1972, 1973). CHARLESWORTH 
(1 97 1) extended these descriptions to include fitness values that were strictly 
decreasing functions of population size. With this latter property, an analog of 
the Fisher-Wright maximization theorem for density dependence has been 
established that asserts that selection results in an equilibrium allele frequency 
that corresponds to a local maximum equilibrium population size (ANDERSON 
1971; ROUGHGARDEN 1971, 1976; CHARLESWORTH 1971; GINZBURG 1977a; 
ASMUSSEN and FELDMAN 1977; HASTINGS 1978; GREGORIUS 1979). Our objec- 
tive in this paper is to apply this maximization principle to a class of fitness 
expressions with explicit birth and death terms and thereby identify the rela- 
tionship between these two important population entities that leads to the local 
maximization of population number. 

Our choice for the genetic fitness expression is 

where b, and d, are the per capita density-independent rates of recruitment 
and mortality, respectively, associated with genotype i j .  The density-dependent 
recruitment function, AN), and mortality function, g(N), satisfy the following 
conditions: (1) A N )  and g(N)  are continuous and differentiable, (2) f (0)  = 1 
and g(0) = 1, (3) J N )  is nonincreasing (dJ/dN 5 0) and g(N)  is nondecreasing 
(dg/dN z 0) and (4) the function F(N)  =f (N) /g(N)  is strictly montonic decreas- 
ing (dF/dN < 0) with K L  F(N)  = 0. We assume the first condition for conven- 
ience. The second condition allows exponential population growth at low den- 
sities, and conditions three and four assure density dependence throughout 
the range of adult numbers. These restrictions on the fitness expression (2) 
satisfy the conditions of the continuous time model of GINZBURG (1977a). 

SELECTION ON RECRUITMENT 

In the first genetic situation, we shall associate the genotype differences only 
with the density-independent rates of recruitment. The death rates and the 
density-dependent recruitment and mortality functions are the same for all 
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genotypes so that (2) reads 

W,{N) = b, f (N)  - dg(N). 

dp7/dt  = PI@, - KMN) 

d N / d t  = (bs(N) - dg(N))N 

(3) 

( 4 4  

(4b) 

Substituting (3) into the description of natural selection (1) yields 

17 71 

where b, = zb,p,  and b= 
I= I ,=I 

The equilibrium allele frequencies, p:, are obtained in the usual way by 
setting equation (4a) equal to zero and solving for p,. The equilibria and the 
stability properties of p: are the same as the classical model with constant 
fitnesses. A single nontrivial equilibrium population size, N* > 0, is found 
from equation (4b) when F(N) = d/F*. The asterisk, *, notation indicates that 
b i s  evaluated at p = p*. Since the function F is strictly monotonic, the equi- 
librium is given by iV* = F'(d/b*), where F-' is the inverse function of F ,  i . e . ,  
F- ' (F(N))  = N.  This equilibrium is locally stable provided b > d. Natural 
selection will result in N* being a local maximum by maximizing F*. 

Although A N )  does not alter the equilibrium allele frequencies nor the time- 
independent trajectory of frequencies, dp,/dp, = p,(b, - @/p,(b, - @, this den- 
sity-dependent recruitment function can influence the rate of approach to 
genetic equilibrium. Specifically, if df/dN < 0, then the magnitude of change 
in allele frequency will decrease with increases in population size, N.  In other 
words, given a set of populations with the same fitness values, b,, and the same 
initial allele frequencies, p,(O), the population with the smallest initial density, 
N(O), is predicted to approach genetic equilibrium at the quickest rate. 

We will now illustrate what happens with this type of natural selection by 
examining some graphical representations of the rates of change of allele fre- 
quency and population size under directional selection, balancing selection and 
disruptive selection (Figure 1). WithJN) = exp(-cN) and g(N)  = 1 we obtain 
a model of population growth that has been widely discussed, for example, in 
fisheries biology by RICKER (1954, 1975a,b), in general population theoretical 
studies by MORAN (1950), COOK (1965), MAY (1974, 1976, 1980), SMITH 
(1968, 1974), HOPPENSTEADT (1975), OSTER (1976), MAY and OSTER (1976), 
THIEME (1979), HUNT (1980), FISHER, GOH and VINCENT (1979), LEVIN and 
GOODYEAR (1980), CULL (1981) and in Tribolium research by DESHARNAIS and 
COSTANTINO (1980, 1982a,b) and COSTANTINO and DESHARNAIS (1 98 1).  AI- 
though we use this particular model in order to present this analysis, the 
general findings are not unique to, e.g., A N )  = exp(-cN), but are appropriate 
for a n y f o  that is a monotonic decreasing function of population size. 

In the case of directional selection, the rates of change for allele frequency 
and population number are plotted in Figure 1, a and b, respectively. The 
change in allele frequency is uniformly positive, however, it is a decreasing 
function of N and the change in population size is a maximum at p*. All 
population trajectories eventually converge to the globally stable equilibrium 
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point of p* = 1 and N* = log,(F*/d)/c is maximized by natural selection 
maximizing F*. 

With balancing selection (heterozygote superior) the change in allele fre- 
quency (Figure IC) is positive for p ,  < p* and is negative for p ,  > p* .  The 
magnitude of dp/d t ,  as before, is a decreasing function of population size. The  
sketch of the change in adult number (Figure Id) reveals that, for p = p * ,  
dN/dt is a maximum. All trajectories of the population converge to the globally 
stable equilibrium point given by 0 < p* < 1 and N* is maximum. 

The graphs of dp/dt and dN/dt for the heterozygote inferior are presented 
in Figure 1, e and f, respectively. The patterns of population trajectories are 
different from the other two genetic situations. For p ,  < p* = 0.5 ,  the popu- 
lation moves toward p* = 0, and for p ,  > p* = 0.5 the population becomes 
genetically fixed at p* = 1. For the unstable equilibrium p* = 0.5, dN/dt  is 
always a minimum. At the locally stable genetic equilibria p* = 0 and p* = 1, 
the corresponding equilibrium population sizes are local maxima. 

SELECTION ON MORTALITY 

In the second genetic possibility, the genotype differences are visualized in 
the per capita density-independent death rates, dv, so that equation (2) is 

The rates of change in allele frequency and population size are given by 

dpi/dt = pi(H - di)g(N). (64  

dN/dt  (bf(N) - Zg(N))N (6b) 
I1 n 

where di = d& and 2 = Ed#,.  
j =  1 i=l 

As in the case of selection on recruitment, the equilibrium allele frequencies 
are independent of population size, and the stability properties are the same 
as in the classical model. Also, the trajectory of allele frequency, dpildpj, is 
again independent of population size, and the effect of gene frequency on the 
rates of change in adult number is qualitatively the same in both cases, i.e., 
for a given value of N, dN/dt is always maximum for a stable p* and a mini- 
mum when p* is unstable. 

The most striking comparison between recruitment and mortality selection 
is that with selection on mortality the magnitude of change in allele frequency 

FIGURE 1.-A series of three-dimensional plots of the change in allele frequency, dp/dt ,  and 
the change in adult numbers, dN/dt, as functions of allele frequency, p ,  and adult numbers, N, for 
a single locus genetic model with two alleles described by equation (4) withJ(N) = exp(-EN), g(N)  
= 1 ,  d = 0.25 and c = 0.02: (a)-(b) directional selection blI = 3, b12 = 2, 6 1 2  = 1 ,  (c)-(d) balancing 
selection bt2 = 3,  bll  = b22 = 0.5 (e)-(0 disruptive selection b12 = 0.5, b l I  = b2Z = 1.75. The solid 
curves represent sample trajectories for nonequilibrium populations that were generated using a 
Runge-Kutta numerical method. The stable equilibria are shown by stars. The effects of selection 
are dampened by increasing adult numbers. Population size is maximized at the genetic equilibria. 
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is forecast to increase as N approaches N*,  whereas when the genetic differences 
are associated with the per capita density-independent rates of recruitment, 
the magnitude of dp,/dt is predicted to decrease as population size approaches 
its equilibrium. In addition, a high mortality represents a low fitness; conse- 
quently, the equilibrium population size N* = F-’ (Z*/b) will be a local maxi- 
mum because natural selection will minimize dl 

Perhaps the most familiar example of population growth with density-regu- 
lated mortality is the Verhulst-Pearl equation. As formulated by MACARTHUR 
(1 962), ANDERSON (1 97 l) ,  ROUGHGARDEN (1 97 1) and CHARLESWORTH ( I  97 l), 
the genotypic fitness is W,(N) = rV(K, - N)/KV. If we let r2] = b - d ,  and define 
K ,  as the equilibrium density of an imaginary population composed entirely of 
i , j  genotypes, then we have an example of density-regulated mortality with AN) 
= 1, g(N) = N + 1 and K ,  = F-’(d,/b) = r2,/d,. In this case, the equilibrium 
population size N* = F-’(d*/b) = (b /z*)  - 1 corresponds to a “harmonic mean 
of the K ,  weighted by the r,]” (CHARLESWORTH 1971, p. 470). It is clear that 
N* is maximized when natural selection minimizes the arithmetic mean mor- 
tality dl 

A series of three-dimensional graphs of the change in allele frequency and 
population number as functions of p and N are sketched in Figure 2 for logistic 
model with selection on mortality. We can see that the magnitude of change 
in allele frequency is increased with population size; this is completely opposite 
to the model with genotypic differences in the rate of recruitment (Figure 1). 

SELECTION ON BOTH RECRUITMENT AND MORTALITY 

We now imagine that the genetic locus effects both the rate of recruitment 
and the rate of mortality. The rates of change in allele frequency and popu- 
lation size are 

dp,/dt = p,[(b, - bNN) + (d - d,)g(N)] ,  

dN/d t  = N[bJN) - Zg(N)] 
i = 1,2, . - . , n ( 7 4  

(7b) 

where bi = bqpj, b = b&, d ,  = 1 d&, and d = dipi. 
j= 1 i= 1 j= I 1= I 

The equilibria are found by setting the system (7) equal to zero. The equi- 
librium population size is 

N* = F-’(z*/&-*) (8) 

(9) 

(10) 

where F(N)  =f(N)/g(N). Setting equations (7a) to zero we have 

(6: - b*)F(N*) - (dt* - Z*) = 0,  i = 1, - e  , n 
From (8) we know that F(N)* = Z*/g*, and substituting this into (9) we obtain 

&-* - (6,*/dt*)z* = 0 i = 1, . . , n 
where the asterisk notation indicates that these averages are evaluated at p = 
p*. In particular, note from equation (IO) that the ratios b’/d: = b*/Z* at the 
genetic equilibria. The local maxima of the ratio b/acoincide exactly with the 



\ 

FIGURE 2.-A series of three-dimensional graphs of the change in allele frequency, dp /d t ,  and 
the change in adult numbers, dN/dt ,  as functions of allele frequency, p ,  and adult numbers, N, for 
a single locus genetic model with two alleles described by equations (6)  with AN) = 1 ,  g(N) = N 
+ 1 and b = 2: (a)-(b) directional selection d l l  = 0.0167, d12 = 0.0202, d22 = 0.0231, (c)-(d) 
balancing selection dI2 = 0.0086, dl l  = dZ2 = 0.0266, (e)-(f) disruptive selection d 1 2  = 0.0290, dll 
= d22 = 0.0176. The stable equilibria are shown by stars. The effects of selection are enhanced 
by increasing adult numbers. Population size is maximized at the genetic equilibria. 
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stable equilibria p*.  This suggests that with selection on both recruitment and 
mortality natural selection will maximize N* by maximizing the ratio of the 
density-independent rates of recruitment to mortality, F/x 

This conjecture can be demonstrated by using GINZBURG’S (1977a) result 
which states that N* = F-’ (z*/F*) is maximized at a stable p* and by recalling 
that F-’ is a continuous monotonic decreasing function. Alternatively, one can 
use equation (10) to show that the characteristic values, A, of the pencil of the 
form b- Xd are X = max (b /d)  and that these maxima are assumed for the 
characteristic vectors, p * ,  of the pencil (GANTMACHER 1959, pp. 317-323). 

An important property of the rates of change in allele frequency for selection 
imposed on either recruitment or mortality is that the trajectory of allele 
frequency, dp,/dp,, is independent of N.  With selection on both recruitment 
and mortality this time-independent trajectory is indeed now a function of 
population size. For example, when N is small ( i . e . ,  N << N* such that F(N) = 
f(rz)/g(N) C 1) the genetic differences in fitness (equation 2) are determined by 
b,, - d,, and selection will change allele frequencies so as to maximize the 
exponential rate of population growth b - Alternatively, when N is large 
( i , ~ . ,  iV >> iV* such that F ( N )  = f (N)/g(N) 5 0) differences among the d,’s 
dominate, and selection will alter allele frequencies so as to minimize the mean 
mortality rate & But, as we have already shown, selection will ultimately max- 
imize the ratio b/d when population density has reached its equilibrium. Since 
the allele frequencies corresponding to a maximum of b- z, a minimum of 

and a maximum of b/a may be quite different, qualitative changes in the 
direction of selection can occur. 

To illustrate what happens with genetic differences in both recruitment and 
mortality we let f ( N )  = exp(-c.Y) and g(iV) = exp (miv). At low populations 
densities the change in allele frequency (Figure 3a) is uniformly positive, and 
natural selection will maximize the difference between the mean recruitment 
and the mean mortality rates. At these low densities, allele frequency will move 
toward unity. However, as the population continues to grow natural selection 
will no longer maximize the difference b - d but will maximize the ratio F/x 
The direction of dp/dt  will become negative and the population will then move 
toward the equilibrium allele frequency of 0.29. The equilibrium population 
density is N* = log,(F*/z*)/(c + m) = 75.8. The graphical representation of 
the change in population size (Figure 3b) reveals that, for a given ilr, diV/dt is 
not always maximum at p*. 

At this point, it is worth reiterating the fact that we have been examining 
the effects of natural selection on the density-independent recruitment and 
mortality rates, that is, the entities band dl However, at demographic equilib- 
rium, the expression d N / d t  = 0 means that the overall rates of recruitment 
and mortality are equal or, in terms of our model, @N*) = &r(N*). This 
constraint defines AT* as an implicit function of the allele frequencies. As 
selection maximizes the ratio F/z, N* increases to a value that minimizes the 
ratio AIV*)/g(N*), thus preserving the identity (b/qlf(N*)/g(N*)J = 1 .  In other 
words, at demographic equilibrium genetically based changes in the density- 
independent components of recruitment and mortality are balanced by ecolog- 
ically based changes in the density-dependent components of recruitment and 
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FIGURE 3.--Selection on both recruitment and mortality. (a), The change in allele frequency, 
dp /d t ,  and (b) the change in population size, dN/dt, as functions of allele frequency, p ,  and density, 
N, for a single locus genetic model with two alleles described by equations (7) withf(N) = exp(-cN), 
g(N)  = (ialv),  c = 0.02, sn = 0.003, recruitment rates b l l  = 2, b12 = 1.5, bZ2 = 1 and mortality 
rates d l l  = 0.5, d12 = d22 = 0.2. The stable equilibria are shown by stars. 

mortality with the net result being the maximization of the implicit function 
N". 

Finally, a discrete time version of the continuous time model can be obtained 
by integrating equations (7) over consecutive finite time intervals of size At. 
Since b&V) and d,g(N) are rates we can let R,(t) = exp[J;+"tf(N(~))d7] be the 
number of new recruits per individual for genotype and S,(t) = 
exp[-J:'"dllg(N(7))d7] be the genotypic survivorship over the time interval t to 
t+At. The discrete time analogs of equations (7) are 

pi(t + At) = pi(t)[Ri(t)Si(t)]/[R(t)qt)], i = 1 ,  - * , TI 

N(t + At) = iV(t)R(t)qt) (1 1b) 
where R,(t) = exp[J:'"'bl(7~~(7))d7], E(t) = exp[J:+"'bf(N(~))d~], S,(t) = exp[- 
J:'"'dl(.)g(N(7))d7], and s (t) = exp[-J:+*'q~)g(N(7))d7]. Equations (1 1) show the 
relationship between the rates of recruitment and mortality in our continuous 
time model and the product of recruit numbers and survivorship common to 
discrete time formulations (CROW and KIMURA 1970, p. 191). 

DISCUSSION 

Fitness in the continuous model with overlapping generations is measured 
in terms of the Malthusian parameter, m (FISHER 1930). For the genotype AAJ, 
CROW and KIMURA (1970, p. 190) let m, = b ,  - d,J. In this paper we have 
modestly extended this viewpoint by writing the fitness W J N )  explicitly in 
terms of genotypically determined birth and death rates coupled with the 
density-dependent factors AN) and g(N) (see equation 2). We can accommodate 
the classical interpretation by setting AN) = g(N) = 1. In this situation, popu- 



1038 R. A. DESHARNAIS AND R. F. COSTANTINO 

lation growth does not effect either the magnitude nor the direction of change 
in allele frequency, and selection results in the maximization of the population’s 
exponential rate of growth. On the other hand, in the presence of density- 
dependent factors our findings indicate that (1) when population size N is small 
selection will maximize g -  d7 (2) when N is much larger than its equilibrium 
density N* selection will act to minimize 2 and (3) when population density 
has reached N* selection will maximize the ratio K/dl 

HAIRSTON, TINKLE and WILBUR (1970) actually suggested the terms ”b se- 
lection’’ and “d selection.” This viewpoint was not embraced by PIANKA (1972) 
who favored the MACARTHUR (1 962) and MACARTHUR and WILSON (1 967) 
concept of r and K selection. CASWELL (1982) argued that r-K theory is based 
on the Verhulst-Pearl equation and cannot serve as a basis for demographic 
predictions. In our formulation if one defines K as N*,  then the concepts of r 
and K selection can be related directly to the parameters band z. Using the 
concept of fitness entropy (GINZBURG 1972, 1977b; COSTANTINO, GINZBURG 
and MOFFA 1977; GINZBURG and COSTANTINO 1979) DESHARNAIS and Cos- 
TANTINO (1980) showed that MACARTHUR’S (1962) analogue of Haldane’s cost 
of a gene substitution for density-dependent population growth can be inter- 
preted using the birth-death definition of fitness. But, more importantly, by 
writing the fitness as W&V) = b,(N) - d,g(N) the ecological-genetical arguments 
and conclusions are not based on a particular growth model (e.g., VERHULST 
or RICKER) but are appropriate to many forms of density-dependent population 
growth. Indeed, so many animal population growth models are written in terms 
of birth and death that a compatible definition of Darwinian fitness may allow 
for a smoother transition between ecology and population genetics. Moreover, 
the experimentalist interested in the analysis of density sensitivity (as a recent 
example see MARKS 1982) may find the characterization proposed here (equa- 
tion 2) of value in the design of experiment by focusing attention on the birth 
rate b or the death rate d, or density-dependent recruitment A N )  or density- 
dependent mortality g(.V), or some combination of these. 

DESHARNAIS was supported as a Killam Postdoctoral Fellow at Dalhousie University. 
We want to thank NELSON G. HAIRSTON, SR., for his comments on this manuscript. R. A. 
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