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ARTICLE INFO ABSTRACT

The study of eco-evolutionary dynamics is based on the idea that ecological and evolutionary processes may
operate on the same, or very similar, time scales, and that interactions of ecological and evolutionary processes
may have important consequences. Here we develop a model that combines Mendelian population genetics with
nonlinear demography to create a truly eco-evolutionary model. We use the vec-permutation matrix approach,
classifying individuals by stage and genotype. The demographic component is female dominant and density-
dependent. The genetic component includes random mating by stage and genotype, and arbitrary effects of
genotype on the demographic phenotype. Mutation is neglected. The result is a nonlinear matrix population
model that projects the stage X genotype distribution. We show that the results can include bifurcations of
population dynamics driven by the response to selection. We present analytical criteria that determine whether
one allele excludes the other or if they persist in a protected polymorphism. The results are based on local
stability analysis of the homozygous boundary equilibria.

As an example, we use a density-dependent stage-classified model of the flour beetle Tribolium castaneum. Our
model permits arbitrary life-cycle complexity and nonlinearity. Tribolium has developed resistance to the pes-
ticide malathion due to a dominant allele at a single autosomal locus. Using parameters reported from laboratory
experiments, we show that the model successfully describes the dynamics of both resistant and susceptible
homozygotes, and the outcome of a selection experiment containing both alleles. Stability analysis of the
boundary equilibria confirms that the resistant allele excludes the susceptible allele, even in the absence of
malathion, agreeing with previously reported results.
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1. Introduction

The demographic processes of birth and death drive changes in gene
frequencies and changes in population density and structure.
Demography is therefore central to understanding ecology and evolu-
tion, and eco-evolutionary analyses always strive to incorporate the
fundamental demographic processes of birth, death, and development
(e.g., Coulson et al., 2006; Metcalf and Pavard, 2007). de Vries and
Caswell (2019b) recently introduced an eco-evolutionary framework
that combines matrix population models with basic Mendelian genetics.
Here we use this framework to explore density-dependent selection.

Density dependence occurs when the per-capita vital rates (rates of
birth, mortality, and development) depend on population size or den-
sity. Density dependence may be negative or positive (Allee effects). In
models that contain demographic structure, “density” is a multivariate
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concept. Vital rates may depend on the abundance of a particular stage
or age class, or on a weighted density that gives distinct weights to
different stages rather than the total population density (Caswell et al.,
2004). For example, density-dependent effects due to difficulty in
finding mates leads to fertilities that depend on the abundances or
densities of reproducing stages. Cannabilism is usually restricted to
large individuals eating smaller conspecifics, so density-dependent ef-
fects due to cannibalism are size- or stage-specific. We will assume that
genotypes can differ in age- or stage-specific rates of development,
survival, or fertility anywhere in the life cycle. Thus, we assume that
pleiotropic effects are the rule rather than the exception.

Early theoretical work on density-dependent selection (MacArthur,
1962; Roughgarden, 1971) combined population genetics with un-
structured ecological models by writing genotype fitnesses as a function
of genotypic densities. MacArthur and Wilson (1967) and Roughgarden
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(1971) extended the logistic equation to multiple competing genotypes,
and showed that selection leads to an increase in population density in
a constant environment because only alleles with heterozygote ad-
vantage in the carrying capacity can invade. This result leads to the
ideas of r- and K-selection. Charlesworth (1971) extended this to any
fitness function that decreases with population densities. Charlesworth
(1994) used high-order difference equations to model density-depen-
dent selection in age-structured populations. In this paper, we will in-
corporate age or stage structure by using matrix population models
rather than scalar difference equations.

In this paper we show how to construct a density-dependent
Mendelian matrix population model, based on genotype-specific de-
mographic measurements. We show how to use that model to project
the stage x genotype distribution, and derive analytical conditions that
determine whether alleles will coexist in a genetic polymorphism, or if
one or another allele will go to fixation. We apply the analysis to a study
of pesticide resistance in Tribolium beetles, a species that is a pest of
stored grain products. We investigate the effect of incomplete dom-
inance on the speed of invasion and on the outcome of invasion using
evolutionary stability analysis.

2. Model construction

Individuals are jointly classified by stage (1, ..., ), and by genotype
1, ..., ®. Each genotype is characterized by a survival and transition
matrix and a matrix of fertility rates. Both the transition matrices and
the fertility matrices are assumed to be density dependent. In this
section, we will consider general density dependence without speci-
fying a functional dependence. In Section 3, we apply the general re-
sults obtained to a specific model with density-dependent demographic
rates.

We make the important assumption of female demographic dom-
inance; i.e. we assume that enough males are always present to fertilize
all the females and that the number of offspring produced in a mating is
not affected by the stage or genotype (i.e. the i-state) of the male. This
assumption can be relaxed by introducing a marriage function, but we
do not explore that here.

We also assume that males and females have the same survival and
transition rates, and that male and female offspring are produced in
equal proportions. These two assumptions imply that the male and fe-
male genotype X stage population vectors remain equal provided they
start equal (de Vries and Caswell, 2019a). Therefore, we can treat the
female vector as representative of both the male and the female po-
pulations, and we can calculate allele frequencies in the breeding po-
pulation from the female population vector. These assumptions make it
possible to model sexual reproduction in a one-sex model.

The matrices, vectors and mathematical operations used in this
paper are listed in Table 1. Matrices are denoted by bold upper case
letters (e.g., U) and vectors by bold lower case ~letters (e.g., n). Fol-
lowing Caswell et al. (2018), we use a tilde (e.g., U, 1) to denote block
structured matrices and vectors whose entries describe both demo-
graphic stage and genotype.

For a single locus with 2 alleles, say A and a, we will identify
genotypes 1, 2, and 3 as AA, Aa, and aa, respectively. The population
state vector is

naa (1)
A(t) = | naa(0) |-

Ny, () (€))
where e.g., ngs contains the numbers or densities of stages 1, ..., s for
genotype AA.

The population vector @ is projected from time t to time t + 1 by a
denisty-dependent matrix A(f), so that

n + 1) = A(@)a) ()]
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Table 1
Mathematical notation used in this paper. Dimensions of vectors and matrices
are given where relevant.

Symbol Definition Dimension
g Number of genotypes (3)
® Number of stages
N Total population size
Ny Breeding population size
1, Vector of ones gx1
e; The ith unit vector, with a 1 in the ith entry and zeros various
elsewhere.
c; Indicator vector for breeding stages in genotype i w X1
n Joint stage-genotype vector wg X 1
P Joint stage-genotype frequency vector wg X 1
Di Genotype frequency vector in genotype i gx1
p; Genotype frequency vector of the offspring of genotype i gx1
q; Gene frequency vector in genotype i ax1
q Gene frequency vector in gametes ax1
I, Identity matrix X w
E; A matrix with a 1 in the (i,j) position, and zeros elsewhere. various
U; Demographic transitions for genotype i 0 X
F; Fertility matrix for genotype i 0 X
F; Male mating success matrix for genotype i X0
D; Genotype transitions for stage i gxg
H;(n) Parent-offspring genotype map for stage i gxg
M Jacobian matrix at a homozygous boundary equilibrium gw X gw
® Kronecker product
vecX The vec operator, which stacks the columns of an m X n
matrix X into a mn X 1 vector.
=[U@) + F@®)]a@) 3

where U describes survival and transition rates and F reproduction. The
population projection matrix A depends on i because of genetics (the
genotypes of offspring depend on gene frequencies of parents) and
because of ecological nonlinearities due to density dependence. The
genetic component of the model depends on the normalized population
distribution vector, p(t), defined as

- n(t)

)= .
PO = 150 )
where ||-|| denotes the 1-norm. The normalized population distribution

vector consists of three genotype-specific population vectors:

pAA(t)
P = | Pas(®) |-
P, (D) 5)

2.1. The components of the population projection matrix

The population projection matrix is constructed from two sets of
matrices describing demographic transitions for each genotype, and one
set of matrices describing the parent-offspring map for each stage:

Ui(fi) demographic transitions for femalesof i=1,..8 wXw

genotype i,
E(n) fertility matrix for females of genotype i, i =1,..,8 @ X @

H;(f) parent-offspring map for stage j. j=1,.,s gxg

The matrix U;(f) contains the stage-specific (density-dependent) tran-
sition and survival rates for females of genotype i. The matrix F; (i)
contains stage-specific (density-dependent) fertility rates for females of
genotype i. The matrices H;(fi) map the genotype of a mother in stage j
to the genotypes of her offspring. The (k, £) entry of H; is the probability
that the offspring of a genotype £ mother, of stage j, has genotype k. We
assume that mating is random with respect to stage and hence that the
parent-offspring map is the same for all stages, i.e. H;(ii) = H(i) (as-
sortative mating by stage would lead to differences among the H;). The
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matrix H(f) is discussed in Section 2.3. The model also formally con-
tains matrices describing the transitions of individuals among genotype
classes for each age or stage (Caswell et al., 2018), but since individuals
do not change genotypes these are identity matrices.

2.2. Mating: from genotypes of parents to genotypes of offspring

Non-reproductive (e.g., immature) stages play no role in mating.
Hence, following de Vries and Caswell (2019b), we define the breeding
population by an indicator vector ¢;, for j = 1, ..., g, that shows which
stages of genotype j take part in mating. The ith entry of ¢; is 1 if in-
dividuals of stage i and genotype j reproduce, and O otherwise. The size
of the breeding population is then

g
Ny, = Z (eiT %9 ciT)ﬁ,

i=1 (6)
where e; is a vector (g X 1) with a 1 in position i and zeros elsewhere,
and ® indicates the Kronecker product. Breeding stages are allowed to
differ among genotypes in order to study the fate of traits that change
reproductive schedules. In the special case where the genotypes do not
differ in their reproductive stages, c¢; = c for all genotypes i and
Ny = (1; ® cha, )
where lgT is a vector of ones of dimensions 1 X g.

The genotype frequency vector within the breeding population is

_xa
Po= Ny ®
where

Zg: T
X=) (Ei® ¢)

i=1 ©

with E; a matrix of dimension g X g with a 1 in the (i, i) location and
zeros elsewhere. If the breeding vectors are the same for all genotypes,
¢; = ¢, then

X=(I,® c. (10)

The genotype frequency vector for genotype i is (trivially) p; = e;.

The gene frequencies in an individual of genotype i, q;, and the gene
frequencies in the breeding population, q, are functions of the geno-
type frequencies, so that

q; = Wp, an
q, = Wp,, 12)
where for the 2-allele case,

(1050
W= (0 0.5 1)' (13)

Combining Egs. (8) and (12) yields the following expression for the
gene frequencies in the breeding population

o 4] wxa
b= 4= .
a) N

(14)

We set mutation rates to zero; see de Vries and Caswell (2019b) for
details on how mutation could be included.

2.3. The matrix H

When a female randomly picks an allele from the gamete pool, she
will pick allele A with probability q}j, and allele a with probability qab.
These probabilities therefore determine the distribution of genotypes in
her offspring, which is captured in the matrix H(p),
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b 1y
qA EqA 0
- 1
H(p) = [ q? 3 a; |

1 v v
0 2% % as)
The first column of H(p) contains the genotype distribution in the
offspring of an AA mother; she produces an AA offspring with prob-
ability q}; and an Aa offspring with probability g ab. The second and third
columns give the genotype distributions for mothers of genotypes Aa
and aa. The matrix H is a homogenous function of degree zero of the
population vector i since H(afl) = H(h). Thus we can write it equally
as a function of i or p. For a step by step derivation of H, see de Vries
and Caswell (2019b, Section 2.3 and Appendix A).

2.4. The population projection matrix

To project the eco-evolutionary dynamics, the component matrices,
U;(n) and F,(ii) must be incorporated into the population projection
matrix, A(fi) (e.g., Caswell et al., 2018). To do so, create a set of block-
diagonal matrices U, F, and H that contain the corresponding demo-
graphic matrices on the diagonal, i.e.

g
U=) E;® U®),
; (16)

g
F =) E;® E(d),
; 17)

H=1, ® H(@). (18)

The fertility matrix F(fi) is constructed from the block matrix con-
taining genotype-specific fertility rates and from the parent-to-offspring
genotype map,

F(#) = KTH(@)KF (). 19

where K is the vec-permutation matrix (Henderson and Searle, 1981),
which changes the arrangement of the vector from stages-within-gen-
otypes to genotypes-within-stages. From right to left, the block-diag-
onal matrix F first produces offspring, possibly of different birth stages
(e.g., seedlings of different sizes) as a function of the genotype of the
mother. When they appear, these offspring are associated with the
genotype of the mother. The vec-permutation matrix K rearranges the
vector, and then the block-diagonal matrix H(p) allocates the offspring
to their genotypes, based on the genotype of their mother and the
genotype distribution of the rest of the population. Finally, K" returns
the vector to its original arrangement. This vec-permutation approach
to constructing matrix population models was introduced by Hunter
and Caswell (2005) and is described in more detail by Caswell (2012),
Caswell and Salguero-Gémez (2013), Caswell et al. (2018), and Caswell
(2019). ~

The fertility matrix F(n) captures the process of Mendelian in-
heritance. Substituting Egs. (15), (17) and (18) into Eq. (19) yields

@4F a4 (D) | 3¢5F a0 () 0
F()=| ¢?Fas(@) | 1Fac(®) | d4Fea(B)
0 %QBFAa (n) q(l;Faa (n) (20)

The first block column of F(f) contains the offspring produced by an
AA female. The upper left block in the first column, g, Fxa (1), gives the
production of AA offspring by AA females that randomly pick allele A
from the gamete pool, which happens with probability q4. The next
block down, g,Fxa (1), contains the production of Aa offspring by an AA
female picking allele a from the gamete pool. Similarly, the second and
third row blocks contain offspring produced by an Aa female and an aa
female, respectively.

Since individuals do not change their genotype once they are born,
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the survival matrix is the block diagonal matrices,

U®@) = K'I,KU = U, 21
or written in terms of the genotype-specific block matrices,
U4 (D) 0 0
U(n) = 0 |Uw@| o
0 0 | Uw(n) (22)

We project the stage X genotype dynamics with U(#) in Eq. (22) and
F(h) in Eq. (20), using Eq. (3).

3. Stage X genotype dynamics of Tribolium

Flour beetles of the genus Tribolium have been used extensively to
study population dynamics and population genetics, see Costantino
et al. (2005) for a review. Tribolium is an economically important pest
of flour and stored grain products. A nonlinear matrix population model
for Tribolium was developed by Cushing and collaborators, see for ex-
ample Cushing et al. (2002). The Tribolium model contains three stages:
larvae (L), pupae (P), and adults (D). It is nonlinear because, in addition
to feeding on flour, Tribolium adults cannibalize eggs and pupae; larvae
in turn cannibalize eggs. These nonlinearities lead to a plethora of in-
teresting bifurcations, attractors, and transient and asymptotic dy-
namics, which have been studied extensively (Costantino et al., 1995,
1997, 2005; Henson et al., 2002; Cushing et al., 2002; Edmunds et al.,
2003).

We use the Tribolium model as the basis for a genetic model by in-
cluding one-locus, two allele (A and a) Mendelian genetics.

We define effective adult densities D* and D, and an effective larval
density L', as linear combinations of the genotype densities

Table 2

Parameter estimates for malathion resistant and susceptible strains at 3 ppm
malathion, from Table 2 in Cheung (2002). Heterozygote parameters are as-
sumed to be identical to the resistant homozygote.

Ecological Modelling 416 (2020) 108875

D* = xanDaa + %aaDaa + %o Daa, (23)
Df = gAADAA + gAaDAa + gaaDaa’ 24)
L+ = XAALAA + XAa LAa + Xaa Laaa (25)

and use these to express the density effects of pupa cannibalism by
adults (23) and egg cannibalism by adults (24) and larva (25). Each
genotype i has a survival and transition matrix,

0 0 0
U = a- ,ui) 0 0
0 e (1-w (26)

where ; and »; are the larval and adult mortality rates, respectively. In
addition, each genotype i has a fertility matrix,

00 Bel'-P
E=lgo o |
00 0 27)

where f3; is the fecundity at low densities. This parameterization permits
selection to operate on any of the life-history characteristics; i.e. stage-
specific viability, fertility, and/or cannibalism rates.

Genotype X stage dynamics. As an example of genotype X stage dy-
namics, we use parameters estimated from a laboratory population of
Tribolium by Dennis et al. (1995) (Table 2). We introduce a hypothetical
allele with additive effects on fecundity (parameter f3). The simulation
was initialized with a population of AA individuals with low fecundity
at the stage distribution of the homozygote equilibrium. After 50
iterations, one larval heterozygote is introduced into the population
with a fecundity exactly in between the two homozygotes. The invading
allele with larger birthrate gradually takes over the population and
becomes fixed. As the genetic composition of the population changes
(Fig. 1C and D), the population structure changes (Fig. 1A and B).
Eventually, as the population approaches the aa boundary, the dy-
namics bifurcate from a stable equilibrium to a two-point cycle. Matlab
code and parameters used for Fig. 1 are in the Online Supplementary
Materials.

Parameter m ss
B 9.650 0.6564 4. The outcome of density-dependent selection: conditions for
X 0.006730 0.005727 genotype coexistence
4 0.009901 0.0
K 0.01051 0.01330 . . . .
" 0.1115 0.6586 The most basic question about selection, density-dependent or
v 0.5 0.5 otherwise, is the question of whether genotypes coexist, so that the
population retains some degree of genetic diversity, or whether one
A B Fig. 1. Eco-evolutionary dynamics of the invasion of an allele
120 s 400 with a higher fecundity  (Baa = 5.68, faq = 8.68, faq = 11.68).
S b= All other parameters are taken from Table 1 in Dennis et al.
© 110 = 300 ——Pupa (1995) and are set equal for all three genotypes: y; = 0.009264,
3 s & = 0.01097, x; = 0.01779, y; = 0.5129, 1; = 0.1108 for all i. a.
=3 100 3200 Abundance of the adult stage. b. Abundance of larvae and pupae.
= = c. Frequencies of the A and a alleles. d. Frequencies of the three
3 9 o 100 ¢
2 = genotypes.
80 2o
0 500 1000 0 500 1000
Time Time
D
c 1 1
3 —A —AA
8 —A
= a 8 a
it o aa
o 2
(0] 0.5 o 0.5
= &
[
5 0]
< k
0 0
0 500 1000 0 500 1000

Time Time
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Fig. 2. Graphical depiction of the wg-dimensional space defined by combinations of w stages and g genotypes. If both the homozygous boundaries are unstable, then a
homozygote state can never be reached again once both alleles are present in the population (since both alleles grow when rare). Image by Jan van Arkel.

allele becomes fixed. The question becomes more complicated, but no
less basic, when demographic structure and nonlinearity are included.
In this section, we present a general condition for determining the
outcome of selection.

The dynamics of ii take place in an wg-dimensional space defined by
combinations of w stages and g genotypes (with g = 3 in the present
context). In the absence of mutation, the w-dimensional boundary
subspaces corresponding to the homozygous genotypes AA and aa are
invariant under the dynamics specified by A[fi]; these dynamics are
given by the nonlinear projection matrices for the homozygous geno-
types (Fig. 2).

We assume the existence of a single equilibrium on each boundary,
and that this equilibrium is stable with respect to perturbations in the
boundary subspace. Coexistence of the two alleles in a protected
polymorphism (Levene, 1953; Prout, 1968; see Nagylaki, 1992, Chap.
6) results when the boundary subspaces are both unstable to pertur-
bations into the interior. That is, if allele A can invade a population of
aa individuals and allele a can invade a population of AA individuals,
then a homozygote state can never be reached again once both alleles
are present in the population (since both alleles grow when rare).
Mutual invasibility therefore leads to a protected genetic poly-
morphism.

In general, the dynamics in the interior are unknown, and could
include multiple equilibria, strange attractors, cycles, etc. Provided
both boundary subspaces are unstable to perturbations into the interior,
we refer to any of the (possibly exotic) dynamics in the interior as a
protected polymorphism.

In general, nonlinear models could possess multiple invariant sets
(equilibria, cycles, strange attractors) on the boundary. We restrict our
discussion to models with a unique equilibrium on the boundary.
Extending the analysis to include a k-cycle on the boundary would be
accomplished by transforming the k-point cycle into an equilibrium of
the k-fold map, but we do not consider this here.

4.1. Stability of the homozygote boundaries

The stability of a boundary equilibrium is determined by the spec-
tral radius (i.e. the magnitude of the eigenvalue with the largest mag-
nitude) of the Jacobian matrix at the equilibrium. We denote this ei-
genvalue by {44 and {,, for the AA and aa boundaries, respectively. If
[¢] <1 the equilibrium is stable; if || > 1 it is unstable. We assume
that the boundary equilibria are locally stable to perturbations within
the boundary subspace, so if the equilibrium is unstable, the associated
eigenvector must point into the interior, which implies that the in-
vading allele increases when rare.

The Jacobian matrix,

_ da(t + 1)
da’() |’ (28)

is obtained by differentiating Eq. (3) and evaluating the resulting de-
rivative at the boundary equilibrium. Here we give the Jacobian at the
AA boundary; the expression at the aa boundary can be derived after-
wards by symmetry. The Jacobian matrix at the AA boundary is

dvec(Uaa)
onT

Ecological nonlinearity

dvec(Fap)

M= A(M) + (e;® Hl,® L) +@® hj,® L) T

99,
on’T|,

99,
onT

Genetic nonlinearity

+ (1 ® I,)(Eaafiaa)

—(e2 ® I,)(Eaafiaa)

29

see Appendix A for a derivation. The linearization reflects the two
sources of nonlinearity in the model: those due to ecological density
dependence and those due to the genetic frequency-dependence.

The matrix M is a block structured matrix with blocks corresponding
to genotypes and entries within the blocks corresponding to stages
within genotypes,

M | Mip | M3
M= | My | My | My
Ms; | Msy | Mss (30)

The block M;; represents the contribution of perturbations in the AA
direction to growth or decline of perturbations in the AA direction,
block M;, represents the contribution of perturbations in the Aa di-
rection to growth or decline of perturbations in the AA direction, etc.
All of the blocks in the Jacobian are given, with their derivation, in
Appendix A.

Evaluated at the equilibrium on the AA boundary, the Jacobian
matrix M is block upper triangular, with

M;; =M; =M;3, =0, (31)

(See Eq. (A.35) in Appendix A). Thus the spectral radius of M depends
on the eigenvalues of the diagonal blocks. Block M3z = U,, projects
perturbations in the aa direction, and since p(U,,) < 1 this direction is
always stable. The block M;; projects perturbations within the AA
boundary. By assumption, the boundary equilibrium is stable to such
perturbations, so the spectral radius of M;; must be less than one. The
stability of the AA boundary equilibrium therefore depends on the
spectral radius of the submatrix M.,
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1 . 1 . T
My, = | Up,(A) + —Fp,(0) + — (Faan ® ca,ls
22 ( Aa( ) 2 Aa( ) 2Nb( AA- AA) Aa) (32)
where Nj, is the number of individuals that are in a breeding stage at the
equilibrium (see Appendix A). Because M, is non-negative, its largest
eigenvalue is real, and corresponds to the spectral radius.
We denote the maximum eigenvalue of M, as

{AA = p(My;) (33)

where p(-) denotes the spectral radius of the matrix. By symmetry, the
dominant eigenvalue of the Jacobian matrix at the aa boundary, de-
noted by ¢, is obtained by replacing AA by aa in (32).

Criteria for a polymorphism. A protected polymorphism occurs when
both boundaries are unstable, i.e. when

o >1 and ¢, > 1. (34)

The inequalities in Eq. (34) are satisfied if and only if

A 1 n 1 . T
Una —Faa —(F, a 1,
P( Jaa (1) + ST (h) + 2Nb( Aafian) ® cp ) > 35)

N 1 R 1 N
p(UAa(n) + EFAa(n) + E(Faanaa) ® C/Ia) > 1. (36)
We note that the conditions for polymorphism in Egs. (35) and (36)
are a function of the nonlinear demographic rates of both the invading
heterozygote and the resident homozygote (through the matrices U; and
F;) and of the structure of the homozygote equilibrium, fixs or fi,,.

5. Tribolium revisited: density-dependent selection and pesticide
resistance

Armed with these coexistence conditions, we return to Tribolium to
study the spread of malathion resistance in the red flour beetle,
Tribolium castaneum. Malathion was a commonly used pesticide in grain
storage in the 1950s, and malathion resistance has since become
widespread in Tribolium castaneum. The evolution of pesticide re-
sistance is usually assumed to involve a fitness trade-off, in which re-
sistant genotypes are at a disadvantage in the absence of the pesticide.
However, there appears to be no fitness trade-off related to malathion
resistance in T. castaneum. The resistant strain appears to have higher
fitness even in the absence of malathion (Haubruge and Arnaud, 2001;
Cheung, 2002; Arnaud et al., 2005). Arnaud et al. (2005) suggest that
the higher fitness of malathion resistant genes may be the result of
posterior modification of the insect genome after resistance became
prevalent.

The genetics of malathion resistance varies among strains; some-
times resistance is found to be polygenic, while in other strains, it is due
to a dominant allele at a single autosomal locus (Wool et al., 1982).
Cheung (2002) studied a Tribolium strain in which resistance is pri-
marily controlled by a single, dominant allele or closely linked set of
alleles.

We denote the resistant allele with r and the susceptible allele with
s; the genotypes are ss, rs, and rr. Since the resistant allele is almost
completely dominant, Cheung assumed that the demographic rates of
the rs genotype are identical to the demographic rates of the rr geno-
type; i.e.

U, (h) = Us(h), 37)
E.(f) = E(f), (38)

for any population vector f.

Cheung estimated Us, Fg;, U, and U,, in the laboratory under three
levels of malathion exposure (Oppm, 1.5ppm, and 3ppm).
Experimental populations were kept in 120ml Wheaton vials con-
taining 20 grams of media (92.5% bleached white flour, 5% dry
brewer's yeast, 1.5% ground fumigation, and 1% sunflower oil). The
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media containing 1.5 ppm and 3 ppm malathion was prepared by di-
luting malathion into the sunflower oil before adding to the flour. Each
malathion treatment was initiated with 250 larva, 5 pupa, and 250
adults.

Three treatment groups were established, with different initial allele
frequencies and four replicate populations in each treatment group.
Populations in the two homozygous boundary treatments were initiated
with all ss and rr insects. In the “evolving treatment” each population
was initiated with all ss larvae and pupae, and with 245 ss and 5 rs
adults, resulting in an initial r allele frequency of 0.01 among adults. All
life stages in each population were counted once every two weeks for
80 weeks (t =0, 1, 2, ..., 40). Adult mortality was set at 50% by re-
moving half the number of adults counted in the previous census minus
the number of dead adults found in the current census. One of the re-
plicate populations in the evolving treatment group was lost to disease
at week 56 (t = 28). Parameters for rr and ss genotypes were estimated
from homozygous populations with a maximum likelihood procedure,
which is described in Section 2 of Cheung (2002). The parameter values
are given in Table 2.

5.1. Dynamics under pesticide exposure

Fig. 3 shows adult abundance data from Cheung's experiments at
3 ppm malathion and the results of projections from the Tribolium
model using the parameters in Table 2. Under these conditions, a
homozygous ss population goes extinct (Fig. 3a), and a population of
homozygous rr individuals persists at a stable equilibrium (Fig. 3c).
When a small number of heterozygote rs individuals are introduced into
a susceptible population, evolutionary rescue saves the population from
extinction (Fig. 3b).! matLAB code and parameters used for Fig. 3 are in
the Online Supplementary Materials.

Cheung (2002) estimated allele frequencies at the end of the ex-
periment (t = 40) in the three surviving populations of the evolving
treatment group by sampling and isolating 45-50 large larva or pupa,
mating them with ss genotypes, and testing the survival of their off-
spring in malathion media to determine the genotypes of the sampled
insects. This yielded estimates of the frequency of the r allele of 0.857,
0.948, and 0.889, with a mean and standard error of 0.898 + 0.027. In
comparison, at t = 40, the model predicts a frequency of the r allele of
0.862, which is not statistically different from the mean experimental
value (p = 0.31).

5.2. Boundary stability

The stability of a population of the ss homozygote when invaded by
the resistant allele is determined by the dominant eigenvalue ( of the
Jacobian. The final term in (35) simplifies significantly because the
Tribolium model contains only one reproducing stage. If we denote the
stage abundances at the susceptible equilibrium by Lg, B, Dy, then

1 A T (ﬁgsASSe*"el,ssi‘ss*Kea,ssAss)el ® e;—
—(E;m)n Cry = — =
2Nb ( SS( ) SS) ® s ASS (39)

= ss(ﬁss)~ (40)

Thus the ss equilibrium will be invaded by the resistant allele if

1 . .
0 0 E(ﬁrs + ﬁss)e*)(ssLss*gssts
Se=p Q- O 0 > 1
0 ey (1= (41)

At 3 ppm malathion, (s = 1.8450, so the resistant allele is able to

! Noise-induced oscillations occur in the resistant Tribolium populations be-
cause the attractor on the resistant boundary is near the bifurcation threshold to
a stable period-two cycle.



C. de Vries, et al.

invade. In the absence of malathion, {; = 1.0265, so the resistant allele
is superior, even without the advantage of the presence of malathion.

Since the model assumes complete dominance, the rs and rr in-
dividuals have identical parameters. This implies that ¢, = 1, and that
linearization fails to show the stability of the equilibrium. This is a well
known phenomenon in models for selection against recessive alleles
(e.g., Nagylaki, 1992, Sect. 4.2). Because recessive homozygotes are so
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(a) Population of susceptible Tribolium individuals at 3 ppm
malathion.
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(b) An evolving Tribolium population of individuals at 3
ppm malathion, initial frequency of r allele is 0.01.
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(c¢) Population of resistant Tribolium individuals at 3 ppm
malathion.

Fig. 3. Adult abundance summed over genotypes, solid black line is simulated,
dashed lines are data from replicates. a. Population dynamics on the susceptible
boundary at 3 ppm malathion. b. Population dynamics of an evolving Tribolium
population. Initially the frequency of the r allele among adults is 0.01. c.
Population dynamics on the resistant boundary at 3 ppm malathion.

Ecological Modelling 416 (2020) 108875

rare close to the dominant equilibrium, elimination of the recessive is
extremely slow. Simulations, however, show that the resistant
boundary is stable to invasion by the susceptible allele.

Evolutionary stability analysis. The analytical expression that de-
termines stability of the homozygote boundaries allows us to study the
effect of parameter changes on stability; i.e. we can perform an evo-
lutionary stability analysis. To demonstrate such an analysis, we ex-
plore the effects on stability of the degree of dominance of the resistant
allele. This analysis was inspired by Beeman (1983) who found in-
complete dominance of the resistant allele in the Rmal strain of Tribo-
lium at high concentrations of malathion.

We analyze the effect of incomplete dominance by writing the
heterozygote parameters as a convex combination of the parameters of
the homozygotes; e.g., for mortality,

Hys = a- x)l(’trr + XU, (42)

and likewise for all other parameters in the model. The parameter x
weighs the relative effect of the two alleles on all vital rates in het-
erozygotes. When x = 1, the s allele is dominant and when x = 0 the r
allele is dominant.

Fig. 4 shows the dominant eigenvalue ¢, evaluated at both boundary
equilibria, as a function of x. The ss boundary is unstable in the range
[0, 1); the rr boundary is stable in the range (0, 1].

Fig. 5 shows the effect of dominance on the fixation time, defined as
the time required to reduce the frequency of the susceptible allele from
0.99 to 0.01 in the larvae. Alternative definitions of fixation time in-
volving sums of stages rather than the larval stage alone result in the
same qualitative shape. Using a different threshold to define allele
fixation does effect the shape of the curve. The initial increase of the
resistant allele is faster at x = 0 than at x = 0.5, but the final approach
to the boundary is faster at x = 0.5. If we had defined competitive
exclusion as the susceptible allele having a frequency less than 0.2 in
larvae, the line in Fig. 5 would be monotonically increasing with x.

6. Discussion

Demographic models classify individuals into i-states, such as age
classes or developmental stages. The i-state captures all the relevant
information about an individual such that the fate of an individual
depends only on its current i-state and the environment (Metz, 1977;
Caswell and John, 1992; Caswell, 2001). In this paper, we extended the
i-state to include the individual genotype. Treating genotype as a de-
mographic state variable makes the powerful mathematical machinery
of matrix population models available for the study genotype X stage
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Fig. 4. The effect of incomplete dominance on boundary stability as measured
by the dominant eigenvalue of the Jacobian. At x = O the resistant allele is
completely dominant, and at x = 1 the susceptible allele is completely domi-
nant.
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Fig. 5. The effect of incomplete dominance on the time to allele fixation. At
x = 0 the resistant allele is dominant; at x = 1 the susceptible allele is domi-
nant.

dynamics (Figs. 1 and 3). Using genotype X stage models makes the
equally powerful mathematical machinery of matrix calculus available
for stability analysis via linearization (Sections 4 and 5). Using such a
linearization, we obtained conditions for the coexistence of two alleles
at one locus for a general density-dependent demographic model with
age- or stage-structure. This opens new possibilities for eco-evolu-
tionary analysis of life history traits. It complements, but is not intended
to replace, the quantitative genetics approaches recently developed by
Coulson et al. (2010).

We applied the model to study the genotype X stage dynamics of
pesticide resistance in Tribolium castaneum. The model does an excellent
job of describing experimental populations exposed to malathion, and
successfully predicts the outcome of selection (fixation of the resistant
allele). Fixation would occur more quickly for intermediate dominance
than for complete dominance (Fig. 5).

The invasion speed of a pesticide-resistant allele in an agricultural
pest is an important quantity for agriculturalists and/or policy makers.
Pesticide resistance in insects is often determined by only one or two
loci (Roush and McKenzie, 1987; Ffrench-Constant et al., 2004). For
example, a number of single gene mutations are known to result in DDT
resistance in Drosophila (Pittendrigh et al., 1997; Joussen et al., 2008).
Similarly, a single gene was found in houseflies that influences the rates
of penetration of DDT and dieldrin by Hoyer and Plapp (1968). There
are many more examples, see reviews by Georghiou (1969), Roush and
McKenzie (1987), or Ffrench-Constant et al. (2004). The one locus, two
allele model presented in this paper could therefore be applicable to
many cases of insecticide resistance.

Maximization principles. Early work on density-dependent selection
focused on the maximization of equilibrium population size (hence “K-
selection”; MacArthur (1962); MacArthur and Wilson (1967);
Roughgarden (1971)). Charlesworth (1994) extended this result to age-
structured populations and showed that density-dependent selection
maximizes the abundance of the age class that is exerting the density-
dependent pressure on the population. For example, if adults canniba-
lize juveniles and juvenile mortality is a nonlinear function of adult
density, then a successful invasion will always lead to a higher adult
density. In deriving this result, Charlesworth assumes males and fe-
males have identical demographic rates; i.e. there is no sexual di-
morphism in any life-history characteristics.

Because one cannot, in general, find expressions for equilibria in
nonlinear models, we do not consider the maximization of density here.
Moreover, we note that in a structured model there is no reason to
assume that “density” is a single scalar quantity (e.g., Caswell et al.,
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2004). Each stage may have its own effects on other stages; a total
density obtained by adding together tiny seedlings and big trees has
little biological meaning. Equally, each vital rate may be influenced by
a different set of stages, as in the Tribolium model where fertility is a
function of larval and adult densities, but pupal survival depends only
on adult density. Thus, maximization of “density” will not be as simple
a concept in structured models as it is in unstructured models.

Extensions. The model presented here can be extended by relaxing a
number of assumptions. Our assumption of female dominance leads to
the assumption that male and female population vectors are propor-
tional, so that the female population vector can be used to calculate
gene frequencies in the (male) mating population. de Vries and Caswell
(2019a) show that this assumption is met provided males and females
have equal survival and transition probabilities, and are born at equal
proportions. Both these assumptions could be relaxed in a two-sex
model.

The model could also be extended to include more ecological in-
teraction, such as time-dependent demographic rates, interactions
among species, or dependence on environmental resources. The genetic
component of the model can be expanded to include nonrandom
mating, more than two alleles, or mutations.

At the cost of additional mathematics, our results could be extended
to dynamics on the boundaries that are more exotic than fixed points. A
k-point cycle, for example, can be transformed into an equilibrium by
studying the k-fold map, i.e. by applying the population projection
matrix k times.

We did not discuss frequency-dependent selection in this paper, in
which the vital rates of an individual are a function of the frequencies of
the genotypes in the population. Negative frequency-dependent selec-
tion, in which the fitness of a genotype declines as its frequency in-
creases, is often invoked as a mechanisms for maintaining poly-
morphisms. In a structured population, the demographic rates could
depend on the genotype frequencies in some subset of stages rather
than in the entire population. In species with alternative mating stra-
tegies, the mating strategies often show negative frequency dependence
(e.g., studies of salmon by Gross, 1985; Berejikian et al., 2010). In-
corporating frequency dependence in our model would permit analysis
of such traits.

The model construction introduced in this paper remains unchanged
for frequency-dependent models, or for models with both frequency
dependence and density dependence. However, a model with only
frequency dependence becomes linear on the boundaries. Therefore the
population is either exponentially growing or shrinking rather than at
equilibrium on the boundary. To calculate the vulnerability of the
homozygote population to invasion by the other allele in a frequency-
dependent model, it would be necessary to renormalize the population
vector and to project the resulting frequency vector instead, as is dis-
cussed in de Vries and Caswell (2019b).

Conclusion. We began this paper by emphasizing how demographic
and genetic processes combine to determine eco-evolutionary dy-
namics. At this point we have shown several examples of how
Mendelian genetics and density-dependent vital rates, combined into a
stage X genotype-structured matrix model, can be used to this end. The
genotypes determine survival, transitions, and fertility. The rules of
mating and segregation determine the genetic composition of offspring.
The model can project dynamics of joint stage X genotype distribu-
tions, for hypothetical (Fig. 1) and experimental (Fig. 3) situations. The
eventual genetic coexistence is determined by stability analysis of the
homozygous boundary equilibria.
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Appendix A. Derivation of Jacobian matrix, general nonlinear model

The local stability of a homozygote boundary equilibrium is determined by the largest eigenvalue (in absolute value) of the Jacobian matrix of
the nonlinear matrix model evaluated at that equilibrium. We denote this eigenvalue at the AA boundary by {44, and at the aa boundary by ¢,,. If the
magnitude of the dominant eigenvalue of the Jacobian matrix is larger than one when evaluated at an equilibrium, then this equilibrium is unstable.
The Jacobian matrix,

_da(t+1)
aa’() |’ (A1)
is obtained by differentiating Eq. (3),
At + 1) = A[A]A), (A.2)

and evaluating the resulting derivative at the boundary equilibrium. This requires a long series of matrix calculus operations (Magnus and
Neudecker, 1985; Caswell, 2008). The analysis repeatedly takes advantage of the fact that i at the AA boundary contains zeros for the blocks
corresponding to Aa and aa genotypes.

Differentiate Eq. (A.2) to obtain

di(s + 1) = Ada() + (dA)A(), (A.3)
where the explicit dependence of A on ii has been omitted to avoid a cluttering of brackets. Multiply the second term by an wg X wg identity matrix,
dii(t + 1) = Ada(f) + L (dA)A®). (A.4)

and apply the vec operator to both sides, remembering that as i is a vector, vech = A,

dia(t + 1) = AdA(t) + vec[Le(dA)R(L)]. (A.5)
Next, apply Roth's theorem (Roth, 1934), vecABC = (C T®A)vecB, to replace the vec operator with the Kronecker product:
di(t + 1) = Ada(t) + (AT(f) ® L.)dvecA. (A.6)
The matrix A can be decomposed into nine @ X @ block matrices, which are created by adding Egs. (22) and (20):
Uga+q5Faa %ql);FAa 0

A(d) = a2F aa Usq + 5Faq @5 Fa

0 3%F a0 | Usa +4iFaa (A7)
The blocks are denoted by Ay, so that, for example,
Aj; = Upp + q4Fan (A.8)
and
Az =0. (A.9)

The matrix A can then be written as

3
A= Z Ej ® Ay,
ij=1 (A.10)

(eie]) ® (Ayl),
1 (A.11)

where we have used the definition of the matrix E;; = eiejT. Using AC® BD = (A ® B)(C® D), Eq. (A.11) can be rewritten as

]
.Mw

W

3
A=Y (e® Aple] ® L)
ij=1

(A.12)
Next use the identity ), (e; ® I,)A;= ) €; ® Aj to write
3
A= (e® L)Aj(e] ® L)
ij=1 (A.13)

This yields the following formula for vecA:
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3
vecA = Z (6® L) ® (e;® I,)vecA;.
i (A.14)

Armed with this expression for vecA, we analyze the term (2 T(¢) ® Iwg)dvec[\ in (A.6). Replace the derivative of vecA with Eq. (A.14), such that

(AT(1) ® IL,g)dvecA = 23: AT ® Lyl ® L)Q (e; ® I,)]dvecA;

ij=1 (A.15)
Use (A® B)(C® D) = AC ® BD to rewrite
@' L)lg® L)® (&® L) =0T(e® L) ® (yle® L)), (A.16)
substituting this expression into the right hand side of Eq. (A.15) yields
@\T() ® Ly)dvecA = i a7 ® L) ® (e;® L,)dvecA;.

ij=1 (A.17)
When we evaluate this expression on the boundary, only AA individuals are present, i.e.
A7(1) = (s, 0, 0). (A.18)

Substituting this expression for f T(t) into Eq. (A.17), so that only terms with j = 1 are nonzero, yields

3
[BT() ® LypdvecA]| =3 af, ® (6 ® L)dvecA;| .

Iy Ky (A.19)

The A;; matrices are the matrices in the first block column of A, see Eq. (A.7), i.e.
Ay; = Upa () + g5 Faa (), (A.20)
Ay = (1 — @)Eaa(@), (A.21)
A; =0, (A.22)

where we have used that qf =1- qj{. Finally, using these expressions for the A;; matrices and Eq. (A.19) to evaluate Eq. (A.6) on the AA boundary
yields

dia(t+1) = AdA() + (0], ® e, ® L)dvec[Usa(B)] + (s ® 1 ® L,)dvec[giFaa ()]
+(i, ® e ® L)dvec[(1 — ¢)Ea(B)], (A.23)

where the differentials on both sides are evaluated at the boundary equilibrium. Finally, the First Identification Theorem (Magnus and Neudecker,
1985, 1988) and the chain rule together give the following formula for the Jacobian,

At + 1)
O (A.24)

A+ (BL ® 6@ 1)U

on a

3 b
+ (B ® e ® LvecE) A +BL S ¢ ® Iw)avL(I:AA)

on'| on .

qb
-(AL® e ® Im)VeC(FAA)aTAT

}1) R (A.25)

Use the fact that ab" = a®@b* = bT®a for two vectors a and b to write (ﬁ,IA ® e® L) as (e; ® ﬁ,IA ® I,), and likewise for the term
(n ,IA ® e, ® 1,). Also note that the two terms with partial derivates of g4 can be rewritten using (Z'®X)vecY = vec(XYZ) to obtain the following
expression

dvec(Fap)

M +(&Q® ﬁ/IA® IM)T

M= A@)+ (e ® 1, ® L)—
on

. 0
+(er® Iw)(FAAnAA)i?AT
on

. 0
—(e® Iw)(FAAnAA)iiL}r .
on’ |,

N (A.26)
To proceed, we need an expression for the partial derivative of the frequency of allele A in the breeding pool,

6qAb

onT’ (A.27)
Differentiating Eq. (12) from the main text,

g =elq, = e Wp, (A.28)

yields

10
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5q};
T

Combine Egs. (6) and (8) from the main text to write

YL Ei® cDA

—al
=eWaaT (A.29)

b= T e
i (] ® c¢)Hn (A30)
The denominator is the number of individuals in the population that are in a breeding stage, N;. Taking the derivative of p, yields
ap,| NI E® H-3T E:i® cHaY (] ® c)
A5 T = 2 .
on A Ny (A.31)
Writing above expression as a matrix yields
3 0 - cga - caTa
Py 1
U 0; ¢l 0
T T T
A 0, O, Can (A.32)
Substituting Eq. (A.32) into Eq. (A.29) leads to
dq] 8
i A (A.33)
2 N Ny (A.349)
Finally, plug Eq. (A.34) back into the expression for the Jacobian, Eq. (A.26), to write the Jacobian in terms of its block components,
Uya(h) +Faa(h) 1F .(0) 0
M = 0 UAa(ﬂ)'I'%FAa(ﬂ) Faa(ﬂ)
0 0 Uga ()
(i) © 1) PeGaptRan) | (7, @ 1,) Pe=Gaatian) | (], o1,) Peclfaatian)
+ 0 0 0
0 0 0
0 7ﬁ(FAAﬁAA) ®clh, *N%)(FAAIAIAA‘J ®chy
T 0| gp(Fastan)@ch, | §o(Faanaa)®ch,
0 0 0
(A.35)

This is the block-structured Jacobian matrix that appears in Eq. (30).
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ecolmodel.2019.108875.
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