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Abstract

We describe a research program which covers a spectrum of activities essential to testing nonlinear population theory:
from the translation of the biology into the formal language of mathematics, to the analysis of mathematical models, to the
development and application of statistical techniques for the analysis of data, to the design and implementation of biological
experiments. The statistical analyses, mathematics, and biology are thoroughly integrated. We review several aspects of our

current research effort that demonstrate this integration.
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1. Interdisciplinary approach

Nonlinear population theory remains controversial
20 years after its modern revival, primarily because
experimental evidence for dynamic behaviors such
as periodic cycles, aperiodic orbits, multiple attrac-
tors, unstable equilibria with stable and unstable
manifolds, chaos, and strange attractors is meager
(May, 1974; Strong. 1986; Kareiva, 1989; Bartiett,
1990; Logan and Hain, 1991; Costantino and De-
sharnais, 1991; Logan and Allen, 1992; Hastings et
al., 1993). There is a need for new experiments. Our
approach is an interdisciplinary research program
that spans the activities that are essential to testing
nonlinear population theory: from the initial transia-
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tion of the biology into the formal language of
mathematics, to the analysis of mathematical models,
to the development and application of statistical
techniques for the analysis of data and model evalua-
tion, to the design and implementation of biological
experiments. We begin with a brief description of
each part of the program.

Empirical ecologists are continuously refining
field and laboratory systems into effective tools of
discovery (Hairston, 1989). One such laboratory sys-
tem, with a long tradition of successful collaboration
between experimentalists and theoreticians, is the
flour beetle Tribolium (Costantino and Desharnais,
1991). Building on existing biological information
(Neyman et al,, 1956; King and Dawson, 1972;
Mertz, 1972; Sokoloft, 1972, 1974, 1977; Bell, 1982),
we can write mathematical models for the dynamics
of populations with discrete or overlapping genera-
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tions. The larval-pupal-adult (overlapping genera-
tions) model of population growth includes three
nonlinear intraspecific density-regulating interac-
tions. Cannibalism is the key nonlinear biological
process (Chapman, 1928; Park et al., 1970, p. 183).
Whatever model is chosen, the translation of the
biology into the mathematics must be meaningful;
the model must work.

Mathematical ecologists are proficient at formu-
lating growth models and deducing their dynamic
behaviors (Freedman, 1980; Guckenheimer and
Holmes, 1983; Cushing, 1988). Our approach contin-
ues in this tradition, but with a slight modification.
We derive demographic dynamical models which are
based on the biology of a laboratory animal model
with identified intraspecific density-regulating mech-
anisms. The dynamics of these models are examined
mathematically and numerically. This involves an
analysis of equilibrium states and their stability, a
study of cycles, including periodic cycles, Hopf bi-
furcations to invariant loops, and an investigation of
chaotic dynamics and strange attractors. Knowledge
of the kinds of bifurcations that can occur as a
function of experimentally controlled model parame-
ters joins the model with the conduct of the biologi-
cal experiments.

Statistically, the problem of interfacing model
with data amounts to specifying a likelihood func-
tion. This function gives the probability, under some
proposed stochastic mechanism, that the random out-
come would be the observed time series. With a
likelihood function in hand, development of statisti-
cal inference methods (parameter estimation, hypoth-
esis testing, model evaluation, forecasting) is in the-
ory a straightforward, though possibly computation-
ally intensive, process (Stuart and Ord, 1991). The
model must include a probabilistic portion that speci-
fies how the variability in the data arose. Converting
the deterministic equations to stochastic equations
provides an explicit likelihood function.

Experiments provide the data necessary for a
rigorous test of the theory. The time series for a
particular population is a stochastic realization and
as such can be used in the statistical procedures for
parameter estimation, hypothesis testing, and model
evaluation. While mundane, the well-established Tri-
bolium laboratory procedures for culture conditions,
media preparation, animal censusing, etc. all con-

tribute to a flexible experimental system which per-
mits a wide array of ecological manipulations.

2. Transitions in dynamic behavior

One of our objectives is to document experimen-
tally transitions between qualitatively different dy-
namical behaviors as predicted by the deterministic
model. The idea is to manipulate biological parame-
ters such as the rates of reproduction and adult and
larval mortalities in order to move populations across
stability boundaries in parameter space and hence
from one dynamic behavior to another, for example,
from stable equilibria, to periodic cycles, to chaos.
We proceed in two phases.

2.1. Model identification and parameter estimation

The initial research phase for the study of transi-
tions is two-fold: model identification and parameter
estimation. Explicit connections between biologically
meaningful models and carefully collected data are
critical. To locate reliably populations in parameter
space, statistical methods for point and interval esti-
mation of parameters, as well as for model evalua-
tion, are essential. With the model and parameter
estimates in hand, we can calculate a map of parame-
ter space which delimits regions whose boundaries
indicate changes in dynamic behavior. We can also
compute a bifurcation diagram.

2.2. Documenting transitions experimentally

A bifurcation diagram summarizes the transitions
in the dynamical behavior of a model as a function
of its parameter values. The qualitative changes or
bifurcations that occur in a mathematical model are
the guide posts in the design of the biological experi-
ments: laboratory protocol corresponds to the bifur-
cation diagram. The values of the experimentally
controlled parameters are determined by the model
and are chosen to place the populations in regions of
equilibria, cycles, invariant loops, and chaos. We
then compare the observed dynamic behavior of the
experimental populations (time series data) under the
various values of the controlled parameters to that
predicted by the theoretical model.
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We look at two types of life histories to do this
comparative population dynamic research: discrete
and overlapping generations. Different models are
appropriate for these biological circumstances; nev-
ertheless, each involves model identification and pa-
rameter estimation as a first step before attempting to
document transitions in dynamic behavior experi-
mentally.

3. Discrete generation experiments

The simplest mathematical models used for the
dynamics of populations with discrete generations
utilize difference equations of the form N, , =
bN,f(N,). This equation determines how the density
N, of, say, adults in one generation determines the
density N, ., of adults in the next generation. The so
called ‘density regulation factor’ f(N) must be pre-
scribed in such a way as to reflect the basic biology
(fertility, mortality, and growth rates) of the particu-
lar species being described.

3.1. Model identification

A large number of functional forms for f(N)
have been used in the literature (e.g., May and Oster,
1976). This is true even for models attempting to
describe Tribolium dynamics (Costantino and De-
sharnais, 1991). Generally speaking, it is widely
accepted that, at least for large densities, the function
f(N) should be a decreasing function of N, express-
ing the fact that density regulation implies that an
increase in the current generation should result in a
decrease in the next generation. For low densities,
however, a population may experience the opposite
effect, in which f(N) increases with N. There is
evidence that populations of Tribolium can exhibit
this so called ‘Allee effect’ (Allee, 1931; for a recent
discussion see Dennis, 1989).

A commonly used density function is f(N)=
exp(—cN), ¢ > 0 (Ricker, 1954). In this interpreta-
tion b is the net reproductive rate, i.e., the number of
adult offspring produced per parent per unit time,
and c¢ is a measure of density-dependent regulation
(e.g., cannibalism, intraspecific interactions, etc.).

The modification f(N)=vyN* 'exp(—cN) allows
for an Allee effect when « > 1. For models like this,

Nio1 = BN exp(—cN,) (1)

(B = by) in which the graph of the right hand side
bNf(N) has ‘one hump,’ there is a great deal known
about the asymptotic dynamics. Typically there is a
period doubling cascade to chaos as b is increased,
with bifurcations occurring at calculable critical
points.

One stochastic version of the difference equation
model is particularly promising. At the population
sizes typical of flour beetle cultures, we expect the
variability component due to environmental fluctua-
tions to outweigh the component due to demographic
fluctuations (Costantino and Desharnais, 1981; Den-
nis and Patil, 1984; Dennis and Costantino, 1988;
Desharnais et al., 1990). One characteristic of mod-
els with environmental variability seems to be that
noise is additive on a logarithmic scale (Dennis et
al., 1991). Applying this notion to the above model
we write

N1 =BNfexp(—cN,+E) (2)

where E, has a normal (0,0%) distribution, and E,,
E,, E,,... are uncorrelated. This construction pre-
serves the deterministic model as the conditional
mean of In N, | given a particular value of N,.

3.2. Parameter estimation

Beetles are cultured so as to mimic a species with
a fixed breeding interval and nonoverlapping genera-
tions. Adults are placed in fresh flour media and
allowed to oviposit for a fixed period of time which
we call the breeding interval. At the end of the
breeding interval adults are removed and the media
with eggs returned to vials. After 6 weeks the flour is
sifted and the next generation of adults is counted.
The immatures which do not reach adulthood are
discarded. The new adults are placed in fresh flour to
initiate another generation.

A pilot study reveals the potential of this
discrete-generation protocol for studying nonlinear
dynamics. A fixed number of adults of the sooty
strain of T. castaneum was placed into 120 ml glass
vials containing 20 g of media. Adult densities ranged
from 4, 8, 12,..., 100 for a total of 25 treatments.



114 J.M. Cushing et al. / Ecological Modelling 92 (1996) 111-119

Each initial adult density was replicated twice. After
a breeding interval of 7 days, adults were removed
and the offspring allowed to develop for an addi-
tional 5 weeks.

The data (Fig. 1a) are the experimental equivalent
of a one-dimensional map of the adult population in
two consecutive generations. These results suggest a
one-humped curve as discussed above. To locate this
experimental system in the continuum of dynamical
behaviors, we fit the model to the data by calculating
maximum likelihood (ML) estimates for the parame-
ters in Eq. 2. The ML parameter estimates are =
10.76, a = 1.684, and ¢ = 0.07636. These estimates
are represented by the smooth curve in Fig. la.

3.3. Documenting transitions experimentally

Using B as a bifurcation parameter and fixing the
parameters a and ¢ at their estimated values we
constructed the bifurcation diagram in Fig. 1b. The
estimated value of B = 10.76 places the population
well into the range of the model’s chaotic behavior.
We are now ready to put the experimental system to
the test.

By experimentally manipulating the breeding in-
terval we have a way to alter the rate of reproduction
per generation which is the bifurcation parameter B.
Short breeding intervals lead to lower values of (3.
Since the pilot study described above with a breed-
ing interval of 7 days predicts chaotic dynamics,
shorter breeding intervals are forecast to cover the
entire sequence of dynamical behavior from stable

equilibria, through period-doublings, to chaos. Such
experiments are currently underway in our laborato-
ries.

Long-term time series data on populations placed
experimentally where the model predicts different
dynamic behaviors provides the test of the model-
predicted dynamics. To minimize transient behavior,
initial conditions are set near a predicted attractor.
The rigorous statistical verification of the experimen-
tally designed shifts in dynamical behavior is the
evidence for the role of nonlinear mathematics in
population biology.

4. Overlapping generation experiments

In order to account adequately for the population
dynamics in the case of overlapping generations,
‘structured’ models are required, i.e., models that
include the dynamics of different life cycle stages (or
groupings of stages). The methodology for develop-
ing such models in discrete time using systems of
coupled nonlinear difference equations (or nonlinear
matrix equations) is now well developed (Cushing,
1988; Caswell, 1989).

4.1. Model identification

Since we have information about the biology of
flour beetle population growth, we can deduce the
form of the functional relationship linking the values
of larval, pupal and adult numbers at time t+1 to

N
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Fig. 1. Results for the pilot study of the discrete generation model. In panel (a) the number of Tribolium adults recovered are plotted against
the number of adults set. The smooth curve is the Eq. (1) fit by the methods of nonlinear least squares. Panel (b) is a bifurcation diagram for
populations based on Eq. (1) with B as the bifurcation parameter. The remaining parameters were set equal to their estimated values. The
estimated value of B = 10.76 places the populations well into the chaotic region.
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the number of animals at time ¢. The model is
mechanistic and is to be contrasted to empirical
models in which it is assumed that the relationship
between animal numbers at times 7 and r+ 1 is
smooth and can be locally approximated by an inter-
polation function such as a polynomial. The larval—
pupal—adult (LPA) model is a system of three differ-
ence equations:

L =bAexp(—c, A, —c,L,), (3a)
P =L(1- ). (3b)
A =Pexp(—c,A) +A(1—p). (3¢)
Here, L,, P, and A, are the number of feeding

larvae, pupae and non-feeding larvae, and adults,
respectively, at time 7; the unit of time is taken to be
the feeding larval maturation interval so that after
one unit of time a larva either dies or survives and
pupates. This unit of time is also the cumulative time
spent as a non-feeding larva, pupa and callow. The
quantity B> 0 is the number of larval recruits per
adult per unit of time in the absence of cannibalism.
The fractions p, and p, are the larval and adult
probabilities, respectively, of dying from causes other
than cannibalism. The exponential nonlinearities ac-
count for the cannibalism of eggs by both larvae and
adults and the cannibalism of pupae by adults. The
fractions exp(—c, A,) and exp(—c,L,) are the
probabilities that an egg is not eaten in the presence
of A, adults and L, larvae. Cannibalism of larvae by
adults and of pupae and callows by larvae typically
occurs at much reduced rates and is assumed negligi-
ble in the model. The fraction exp(—c,, A,) is the
survival probability of a pupa in the presence of A,
adults. The coefficients c,,, c,,, and Cpy > O deter-
mine the strength of the cannibalism and are called
the ‘cannibalism coefficients.” It is assumed here that
the only significant source of pupal mortality is adult
cannibalism,

Adding noise on a logarithmic scale produces the
following stochastic model:

LH—] :bAteXp(_ceaAt_CelLr+Elr)’ (421)
P =Lt(1 —:U’l)exp(EZt)’ (4b)

A= [Pt CXp(-CPaA,) +A,(1- /“La)] exp( Es,)
(4c)

Here [E,,,E,, E;,] = E, is a random vector and is
assumed to have a trivariate normal distribution with
a mean vector of 0 and a variance—covariance matrix
of X. Covariances among E,,, E,,, and E,, at any
given time ¢ are assumed (and represented by off-di-
agonal elements of %), but we expect the covari-
ances between times to be small by comparison.
Thus we assume that E,, E,,... are uncorrelated.

The dynamical properties of the deterministic
model are preserved in the stochastic formulation as
conditional expected values:

E(n L, ,|L=1, P=p, A=a,)
= In[ ba, exp( —c,,a, — cal))]. (5a)
E(n P IL=1, P=p, A =a,)
=In[(1-m)1]. (5b)
E(n A, \|L=1,,P=p, A=a,)

= ln[ prexp(—cpa,) + (1 - ,ua)a,]. (5¢)

Here is the explicit connection between the mathe-
matical population model and the population time
series data: one-step forecasts. Given the number of
larvae, pupae, and adults at time z, we can predict
the expected number of animals in each life stage at
time 7+ 1 (2 weeks later). The working mathemati-
cal model is stochastic and the connection between
model and data is by one-step forecasts using the
deterministic model, not by continued iteration.

4.2. Locating populations in parameter space

The experimental culture conditions are set to
mimic overlapping generations. For example, in a
study by Desharnais and Costantino (1980) and De-
sharnais and Liu (1987), cultures of the corn oil
sensitive strain of 7. castaneum were initiated with
64 young adults, 16 pupae, 20 large larvae, and 70
small larvae. Each population was contained in a
half-pint milk bottle with 20 g of corn oil media.
Every 2 weeks all age-classes, except eggs, were
censused and all age-classes, including eggs, were
placed in fresh media. This procedure was repeated
for 38 weeks.

We fitted the stochastic model (Eqs. 4a, 4b and
4c) to the time series. The maximum likelihood
estimates and their 95% confidence intervals are



116 J.M. Cushing et al. / Ecological Modelling 92(1996) 111-119

b=11.6772 (6.2,22.2), p, =0.1108 (0.07,0.15), p,
—0.5129 (0.43,0.58), c,, = 0.0110 (0.0040, 0.1800),
¢, = 0.0093 (0.0081, 0.0105), ¢, = 0.0178
(0.0154,0.0207). Details of the statistical methods
such as the likelihood function, maximum likelihood
and conditional least squares estimates, hypothesis
testing, confidence intervals, and model evaluation
are given in Dennis et al. (1995).

The observed time series for two representative
replicates together with the one-step predictions, cal-
culated from Egs. 5a, 5b and 5¢ are graphed in Fig. 2
and Fig. 3. In each figure solid lines connect the
observed census data (closed circles). Dashed lines
connect the observed numbers at time ¢ with the
forecast (open circles) at time 7 + 1. The accuracy of
a particular forecast can be judged by comparing the
predictions at time # + 1 with the number of animals
actually observed at time 7 + 1. In general, the graphs
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Fig. 2. Time series data (closed circles) and one-step forecasts
(open circles) for control replicate A of Desharnais and Costantino
(1980). Solid lines connect the observed census data. Dashed lines
connect the observed numbers at time ¢ with the forecast at time
r+1.
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Fig. 3. Time series data (closed circles) and one-step forecasts
(open circles) for control replicate C of Desharnais and Costantino
(1980). Solid lines connect the observed census data. Dashed lines
connect the observed numbers at time ¢ with the forecast at time
t+1.

reveal a close association between the one-step fore-
casts and the census data. The model appears to
work.

A numerically calculated stability region is shown
in Fig. 4 using the parameter values estimated from
the laboratory data. The positive equilibrium destabi-
lization boundaries are of two types. There is a
boundary at which a bifurcation to a branch of
2-cycle solutions occurs, and there is a boundary at
which a bifurcation to an invariant loop occurs. The
maximum likelihood (ML) parameter estimates place
the system in a zone of stable 2-cycles (asterisk, Fig.
4). The ML location of the system in parameter
space is a point estimate; how much uncertainty is
attached to the estimate? Depicted in Fig. 4 is a
dashed, cigar-shaped closed curve representing a 95%
confidence region for the parameters b and p,. The
region was calculated with the profile likelihood
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method. The dashed curve is a contour indicating
where the likelihood ratio test statistic for the two
parameters equals 5.992 (the approximate 95th per-
centile of a chi-squared distribution with two degrees
of freedom). Note that most of the confidence region
lies within the zone of 2-cycles. However, the tip of
the region does extend into the zone of stable point
equilibria, in an area where the system undergoes
damped oscillations.

4.3. Bifurcation theory leads to new experiments

Using ., as a bifurcation parameter we can iden-
tify the expected dynamical behaviors as a function
of adult mortality (Fig. 5). For very small values of
|, there is a stable fixed point. The first bifurcation
leads to stable 2-cycles. There follows a point equi-
librium region that forms a transition between the
2-cycles and the onset of invariant loops.

In an experiment currently in progress, we are
systematically varying the value of p, in replicate
populations by removing /adding adults as necessary
at the biweekly census. Each treatment involves a
different value of adult mortality; these values are
chosen to place populations in different regions of
model predicted dynamic behaviors. We are. using
., values of control (no manipulation), 0.04, 0.27,
0.50, 0.73, and 0.96 with 4 replicates per treatment.
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Fig. 4. Stability boundaries for the LPA model for parameter
values based on the experimental data (see text). The asterisk
locates the estimated values of 4 =11.67 and p, = 0.1108. The
clongated closed curve (dashed line) represents a 95% joint
confidence region for b and p, based on the profile likelihood.
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Fig. 5. Bifurcation diagram for the LPA model for parameter
values based on the experimental data. There is a bifurcation to a
2-cycle at a small value of p, = 0.011. As the bifurcation parame-
ter p, increases, the population re-enters the region of parameter
space where the positive equilibria are stable (see Fig. 4). How-
ever, there is a narrow interval 0.357 < w, < 0.363 where a stable
2-cycle and a fixed point equilibria coexist, separated by an
unstable 2-cycle (dashed lines). For large values of Mg, the
population crosses the equilibrium stability boundary where stable
invariant loops bifurcate from the equilibria.

Census data are collected on a biweekly basis for the
number of live adults, dead adults, larvae, and pupae
for a total of 36 weeks. We classify the dynamical
behavior of these populations under the various treat-
ments and compare the observed dynamical behavior
to that predicted by theoretical models.

5. Stable and unstable manifolds

In the two experiments described above, we are
attempting to manipulate the rate of reproduction and
adult mortality in order to move populations across
boundaries in parameter space and hence from one
dynamic behavior to another. But just as we are
using two life histories to test robustly the predic-
tions of bifurcation theory, other subtle dynamic
behaviors arise that also may be used to identify the
role of nonlinearity in ecology. We now discuss one
such example: an unstable equilibrium with stable
and unstable manifolds.

For the estimated parameter values, the LPA
model equations (Eqs. 3a, 3b and 3c) have a stable
2-cycle given by the (larval, pupal, adult) coordinate
points (325, 9, 118) and (18, 158, 106). There is also



118 J.M. Cushing et al. / Ecological Modelling 92 (1996) 111-119

a unique positive (unstable) equilibrium L* = 125,
P* =61, A* =97. In order to understand the model
orbits in a neighborhood of this equilibrium we need
to evaluate the Jacobian matrix of the map defined
by the right hand sides of the model equations at
(L, P*, A") and compute the eigenvalues and
eigenvectors associated with the resulting 3 X 3 ma-
trix. Leaving the details of these computations aside,
we find there exists a two dimensional (adult—pupal)
stable manifold and a one dimensional (larval) unsta-
ble manifold. By ‘stable’ we mean that if an orbit
defined by the nonlinear model equations has a point
on this manifold, then it will tend towards the unsta-
ble equilibrium (L*, P*, A®). If an orbit has a
point close to this stable manifold, then it will first
tend towards the unstable equilibrium before moving
away (in an oscillatory manner) in the direction of
the unstable manifold.

The identification and characterization of a saddle
node in the LPA model (Egs. 3a, 3b and 3¢) adds a
new subtlety to the biological interpretation of the
time series: there are many routes to the asymptoti-
cally stable attractor. Populations may move to the
2-cycle quickly and directly with little hint of the
existence of the saddle node. In another approach,
populations may move along the 2-dimensional
adult—pupal stable manifold toward the unstable
equilibrium then move along the 1-dimensional lar-
val unstable manifold to the stable 2-cycle. Are these
theoretically possible transitory behaviors recorded
in the data?

The time series for replicates A and C are pre-
sented in Fig. 2 and Fig. 3. The one-step forecasts
clearly show the ability of the model to accommo-
date both replicates. Statistical tests lead us to accept
the hypothesis that the model parameters for these
two replicates are the same (Dennis et al., 1995).
The saddle node hypothesis suggests that these repli-
cates took different paths to the asymptotic attractor:
replicate A moved to the 2-cycle quickly while
replicate C was influenced by the stable and unstable
manifolds of the unstable equilibrium.

To illustrate the impact of the saddle node on the
transitory behavior of the populations we return to
the deterministic model. In the simulations (Fig. 6),
the initial coordinates of the two examples corre-
spond to the observed animal numbers for replicates
Aand Cat r=7. With L, =27, P,= 136, A, =104
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» 1004 ’- gty g e g g g o
= /
s 75
©
L4
50
25
0 — T ————
5 10 15 20
Time

Fig. 6. Deterministic model time series initiated at Ly =27,
P, =136, A, =104 (solid line) and L, = 125, P, =132, A, =69
(broken line) which correspond to the observed coordinates at
t =17 for replicates A and C, respectively.

(replicate A at r=7) the orbit moves quickly to the
2-cycle as noted in the data. Setting L, = 125, P, =
132, A, = 69 (replicate C at t = 7), the orbit hovers
about the unstable equilibrium which is consistent
with the data.

6. Concluding remarks

The modern theory of nonlinear dynamics cou-
pled with rigorous statistical methods can guide the
conduct of a new phase of population research.
Research in which experiments focus on transitions
in dynamic behavior, unstable equilibria with stable
and unstable manifolds, multiple attractors, chaos or
on any number of other properties of nonlinear sys-
tems will provide the evidence for the role of nonlin-
ear mathematics in population ecology.
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