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Abstract

Chaos has now been documented in a laboratory population. In controlled laboratory experiments, cultures of ¯our beetles

(Tribolium castaneum) undergo bifurcations in their dynamics as demographic parameters are manipulated. These bifurcations, in-

cluding a speci®c route to chaos, are predicted by a well-validated deterministic model called the ``LPA model''. The LPA model is

based on the nonlinear interactions among the life cycle stages of the beetle (larva, pupa and adult). A stochastic version of the model

accounts for the deviations of data from the deterministic model and provides the means for parameterization and rigorous statistical

validation. The chaotic attractor of the deterministic LPA model and the stationary distribution of the stochastic LPA model describe

the experimental data in phase space with striking accuracy. In addition, model-predicted temporal patterns on the attractor are

observed in the data. This paper gives a brief account of the interdisciplinary e�ort that obtained these results. Ó 2000 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Erratic ¯uctuations in population numbers have long fascinated and puzzled ecologists. Prior to the
seminal work of Sir R.M. May in the 1970s, the prevailing paradigm viewed such unpredictable ¯uctuations
as random e�ects due to environmental noise and/or measurement errors. In the absence of noise, ac-
cording to this view, population numbers would either equilibrate or settle into regular periodic oscillations
(induced, for example, by seasonal ¯uctuations or predator/prey interactions). May's [1,2] writings popu-
larized the now familiar fact that erratic ¯uctuations can arise from deterministic processes. As Li and
Yorke [3] rigorously proved, simple scalar (deterministic) recursion formulas can produce a type of ex-
traordinarily complicated dynamics which they called ``chaos''. May warned, however, that documenting
deterministic chaos in natural population data would not be easy, since it would be di�cult to distinguish
chaos from noise.

The warning proved prophetic: ecologists have yet to ®nd an unequivocal example of chaos in a natural
population [4]. This is not surprising, and the reason is not only the pervasive presence of noise in ecological
systems. In fact, the more general problem of connecting nonlinear theory to observed population ¯uc-
tuations via mathematical models has proved a formidable challenge for both ecologists and mathemati-
cians.
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The successful use of mathematical models is commonplace in other disciplines, and con®dence in their
ability to describe and predict runs high (indeed, this is to a large extent why certain sciences are called
``hard''). In ecology, however, while they have been phenomenologically and qualitatively successful,
mathematical models have been considerably less successful with regard to quantitative descriptions and
predictions. There are many reasons for this [5,6]. Not only is noise ubiquitous, but fundamental ``laws'' are
scarce, data time series are short, replicate data series are di�cult to obtain, manipulations are impractical,
parameters cannot be controlled, statistical methodologies are inadequate, and so on. In view of this sit-
uation, conclusions asserting speci®c dynamic properties of a data set ± especially a complicated property
such as chaos ± are rightly viewed with skepticism by ecologists.

The complexity of natural systems, together with the inherent di�culties in con®dently linking such
systems with theory, points to the need for controlled laboratory experiments ± experiments designed and
analyzed for the purpose of testing the predictions of nonlinear population theory. Our research team
initiated such a project in the early 1990s, using species of ¯our beetles (genus Tribolium) as the experi-
mental animal. Although laboratory microcosms are no substitute for ®eld experiments, they are useful for
testing basic ecological hypotheses in isolation from confounding factors. The Tribolium system features
accurate census counts, long data sets (over many generations), the minimization of noise, and a life-cycle
with identi®able stages and interesting nonlinear feedbacks. Because we can manipulate demographic
parameters in ¯our beetle populations we have been able to focus on the rigorous testing of mathematical
models.

A major goal of our project is to document the occurrence of a variety of nonlinear phenomena in
population dynamics. This includes a spectrum of asymptotic attractors (ranging from equilibria to cycles
to chaos) and their bifurcations [7±11], transient phenomena (e.g., the in¯uence of unstable invariant sets)
[12,13], multiple attractors and their basins of attraction [13,14], resonances in periodically forced habitats
[15,16], and many others. One highlight of the project is the documentation of chaotic dynamics in an
ecological population.

2. Modeling methodology

What are the components necessary for a convincing mathematical model in ecology? A modeling ex-
ercise in population biology should contain at least the following basic ingredients [5,6]:

First, the model should not be ad hoc, but instead should be based on speci®c mechanisms judged
important by biologists with regard to the dynamics of the population. There is, of course, a tradeo�
between detail and tractability. A model with too many variables relative to the amount of data available is
not statistically testable. By identifying and isolating dominant mechanisms one can hope to build a model
with an appropriately small number of parameters and state variables.

Second, since noise is ubiquitous in biological data, a stochastic version of the model must be con-
structed in order to account for inevitable deviations from the predictions of the deterministic model [7].
The manner in which the noise is modeled should be based on biological considerations. The stochastic
model becomes a statistically testable hypothesis for the explanation of data [7] and therefore provides the
means for a strong connection between model and data.

Third, parameter estimation and model validation from data should be distinct procedures. Some model
parameters can be estimated independently; others might be experimentally controlled. Inevitably, others
must be statistically estimated (with con®dence intervals) from data by some method, e.g., maximum
likelihood or conditional least squares methods. It is crucial that the data used for parameter estimation not
be used to evaluate the accuracy of the model. Otherwise, in a sense, the model cannot go wrong, since by
design it ``®ts'' or ``interpolates'' the data in some optimal manner; and a model that cannot fail provides
little information.

Fourth, a good model is predictive as well as descriptive. Indeed, the strongest case for a model is made
when it provides predictions which subsequently can be documented by observations or controlled ex-
periments and rigorous statistical analyses.

More details regarding our methodology appear in [6,7].
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For nearly a decade we have collaborated on interdisciplinary projects in which these modeling prin-
ciples are applied to the investigation of nonlinear phenomena in population biology, using laboratory
cultures of ¯our beetles. As mentioned above, it is a goal of the project to document the occurrence of a
variety of nonlinear phenomena in population dynamics, including chaos. However, an equally important
goal of the project is to demonstrate that mathematical models can ``work'' in population dynamics, i.e.,
that models can provide quantitatively accurate explanations for patterns in data and can provide pre-
dictions that we are able to document by carefully controlled and replicated experiments.

3. The LPA models

The dominant mechanisms driving the dynamics of Tribolium castaneum (our experimental animal) are
cannibalistic interactions among life cycle stages [17]. Speci®cally, mobile stages (adults and larvae) con-
sume immobile stages (eggs and pupae). For this reason, we utilize a ``stage-structured'' population model,
i.e., a model in which individuals of the population are categorized according to their stage of development:
larvae, pupae and adults. The beetles are maintained in 237 ml (1/2 pint) milk bottles with 20 g of standard
medium (refreshed at each census) and kept in a dark incubator at 32°C. Each stage is counted at 2-week
intervals (which is roughly the length of both the larval and pupal periods under laboratory conditions).
Since the egg stage is relatively short (3±5 days), we ignore this stage in the model.

Let Lt; Pt and At denote the number of larvae, pupae and adults at time t, respectively. We require
formulas for the numbers Lt�1; Pt�1 and At�1. The unit of time is 2 weeks. If b > 0 denotes the larval re-
cruitment rate (per adult per unit time) in the absence of egg cannibalism, then Lt�1 � bAt. Cannibalistic
encounters occur randomly. A probabilistic argument implies that the probability an egg escapes canni-
balism in the presence of A adults during a unit of time is eÿceaA, where cea > 0 is the adult/egg cannibalism
coe�cient. Similarly, the probability an egg escapes cannibalism in the presence of L larvae is eÿcelL, where
cel > 0 is the larvae/egg cannibalism coe�cient. Thus

Lt�1 � bAt eÿceaAtÿcelLt :

This equation re¯ects the fact that the larval period is 2 weeks (i.e., none of the larvae present at time t are
present at time t � 1).

Larvae are not subject to cannibalism. If ll is the probability that a larva dies in one unit of time, then

Pt�1 � �1ÿ ll�Lt:

This equation re¯ects the fact that the pupal period is two weeks (i.e., none of the pupae present at time t
are present at time t � 1).

Finally, pupae are subject to cannibalism by adults. (Larvae sometimes kill pupae, but we ignore this
interaction which is rare relative to other forms of cannibalism.) Virtually all pupae that survive canni-
balism by adults emerge as adults in one unit of time. Thus

At�1 � Pt eÿcpaAt � �1ÿ la�At;

where la is the probability that an adult dies in one unit of time and cpa > 0 is the adult/pupae cannibalism
coe�cient.

To summarize, the model equations are:

Lt�1 � bAt eÿceaAtÿcelLt ;

Pt�1 � �1ÿ ll�Lt;

At�1 � Pt eÿcpaAt � �1ÿ la�At

�1�

for t � 0; 1; 2; . . . This system of recursion (or ``di�erence'') equations has the form of a nonlinear Leslie
matrix model [18]. The equations de®ne a discrete semi-dynamical system.

The Ricker equation xt�1 � bxt eÿcxt appears frequently in the literature as a dynamic model for a
population with non-overlapping generations. The LPA model described by Eqs. (1) is an extension of the
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Ricker model to a case of overlapping generations. The Ricker equation displays the famous period
doubling route to chaos (similar to the familiar, but less biologically relevant discrete logistic equation
xt�1 � bxt�1ÿ cxt�). Thus, we can expect the LPA model (1) to exhibit complex dynamics, including a route
to chaos, although not necessarily a period doubling route.

Basic facts about the dynamics of the LPA model can be found in [18]. The positive cone R�3 is forward
invariant and (1) is point dissipative. Speci®cally, there is a box 06 L6L�; 06 P 6 P �; 06A6A� inside of
which all orbits starting in R�3 remain after a ®nite number of time steps. This implies there exists a global,
connected attractor in the box [19]. For b < la=�1ÿ ll� the global attractor is the equilibrium
�L; P ;A� � �0; 0; 0�, i.e., all orbits starting in R�3 tend to �0; 0; 0� as t! �1 and the population goes extinct.
For b > la=�1ÿ ll� the origin is unstable and (1) is uniformly persistent (permanent) with respect to the
origin �L; P ;A� � �0; 0; 0�. That is, there exists an � > 0 such that lim inf t!�1�L�t� � P �t� � A�t��P � for all
non-negative initial conditions �L�0�; P �0�;A�0�� 6� �0; 0; 0�. Also, for b > la=�1ÿ ll� there exists a unique,
positive equilibrium. This equilibrium is locally asymptotically stable for b su�ciently close to la=�1ÿ ll�.
For other values of the parameters the equilibrium may, however, be unstable and bifurcations to either 2-
cycles or to aperiodic, invariant loops may occur. For example, Fig. 1 illustrates a 2-cycle bifurcation as the
adult death rate la is increased through approximately 0.1 and a reverse 2-cycle bifurcation and re-
equilibration as la is increased through approximately 0.6. Also seen in Fig. 1 is an invariant loop bifur-
cation (sometimes called a discrete Hopf or Naimark/Sacker bifurcation) at approximately la � 0:95.
Changes in other parameters may lead to di�erent bifurcations, including those giving rise to chaotic and
strange attractors.

To account for deviations of data from the deterministic predictions of the LPA model (1) we construct
a stochastic version of the model in which a speci®c kind of noise is introduced. The resulting stochastic
LPA model serves to connect the deterministic skeleton [20] de®ned by (1) with data; it provides the means
to estimate parameters, construct con®dence intervals for these estimates, and statistically test the accuracy
of the model [7,11].

Ecologists distinguish two general types of noise in ecological systems: demographic and environmental
stochasticity [21,22]. Roughly speaking, demographic random events act at the individual level (e.g., an
individual survives one unit of time with a certain probability) while environmental random events act at an
aggregate population level (e.g., the per capita birth or death rates for all adults randomly change). De-
mographic noise may be expected to play the most important role when population numbers are low,
whereas environmental noise is expected to be more important when population numbers are high. Either
type of noise (indeed, a weighted mixture of both types) can be modeled by a nonlinear autoregressive
process of the form

Xt�1 � f �Xt� � Et;

Fig. 1. A bifurcation diagram is shown for the deterministic LPA model (1) using the parameter la. The other model parameter values

are b � 7:483, ll � 0:2670, cea � 0:009170, cel � 0:01200, cpa � 0:004139. The vertical dashed lines indicate those la values at which

laboratory experiments were performed [8,9].
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where Xt is a vector of suitably transformed 1 state variables and Et is a vector of normal random variables
with mean 0. This formulation has the major advantage of bringing to bear a full suite of statistical in-
ference methods for time series analysis [7,9,20]. In the case of environmental noise a logarithmic trans-
formation is appropriate, whereas for demographic noise a square root transformation is appropriate.

For example, the demographic noise LPA model is described by the equations:

Lt�1 �
����������������������������
bAt eÿceaAtÿcelLt

pj
� E1t

k2

;

Pt�1 �
��������������������
�1ÿ ll�Lt

pj
� E2t

k2

;

At�1 �
�������������������������������������������
Pt eÿcpaAt � �1ÿ la�At

pj
� E3t

k2

;

�2�

where xb c � max 0; xf g and the environmental noise LPA model is described by the equations:

Lt�1 � bAt eÿceaAtÿcelLt eE1t ;

Pt�1 � �1ÿ ll�Lt eE2t ;

At�1 � Pt eÿcpaAt
ÿ � �1ÿ la�At

�
eE3t :

�3�

Here Et � �E1t;E2t;E3t� is a random noise vector assumed to have a joint probability distribution with a
mean vector of zeros and a (symmetric) variance±covariance matrix denoted by R � �rij�. The noise
variables are assumed uncorrelated through time. The deterministic LPA model (1) is obtained by setting
�E1t;E2t;E3t� � �0; 0; 0�; or equivalently R � 0.

The stochastic models (2) and (3) are the cornerstones of our project. They contain both the relevant
deterministic forces and a statistical description of the stochastic deviations from the deterministic skeleton
(1). As such they constitute testable hypotheses to be confronted with data. The next step is to parameterize
and validate these models.

4. Model parameterization and validation

In [7] we parameterized the LPA model (1) using a historical data set by means of both maximum
likelihood and conditional least squares methods. (Estimates for the entries in R also were obtained.) In
addition, a variety of statistical validation tests are described in [7], as are the results of applying these tests
to the LPA model. On the basis of this validation, we used the model and the estimated parameters to
design a (®rst) laboratory experiment. The purpose of this experiment was to document the bifurcations
predicted by the model as a parameter is changed. Speci®cally, using the bifurcation diagram in Fig. 1 as a
guide, we manipulated the adult death rates la of several laboratory cultures of T. castaneum. For each
selected value of la the treatment was replicated three times (as was an unmanipulated control culture). The
results are reported in [8]. Detailed statistical analyses of the model and the data (as well as a description of
the experiment) appear in [9]. Fig. 2 illustrates graphically the results of this experiment and shows visually
how well the model correctly predicted the attractor. (An experiment using a di�erent genetic strain of T.
castaneum also proved successful.)

Bolstered by the descriptive and predictive success of the LPA model in the ®rst experiment, we designed
a second experiment involving a more complicated sequence of bifurcations, a sequence that includes
chaotic (and strange) attractors (see Fig. 3). The experiment involves the manipulation of both model
parameters la and cpa. 2 The death rate is held constant at la � 0:96 while cpa is assigned a selection of
values from 0 to 1 as indicated in Fig. 3. The results after 80 weeks were announced in [10]. Using the
resulting data, we examined both the demographic and environmental noise models (2) and (3). We

1 The transformation is chosen so as to stabilize the variability of the process.
2 At each census time all live and dead adults are counted. This allows for a manipulation of both the adult death rate and

recruitment rate.
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estimated parameters, using a conditional least squares procedure, and conducted diagnostic analyses using
a variety of statistical tests (including homoskedasticity, autocorrelations, normality of residuals, ®tted R2

values, and normal quantile±quantile plots). These analyses show that the deterministic skeleton (1) does an
outstanding job of describing the experimental data. For example, on average the model accounts for 90%

Fig. 3. A bifurcation diagram is shown for the deterministic LPA model (1) using the parameter cpa. Other parameter values are those

appearing in Table 1, together with la � 0:96. The vertical dashed lines indicate those cpa values at which laboratory experiments were

performed [10,11].

Fig. 2. The open circles are �L; P ;A� data points, with transients removed, obtained from experiments at the cpa values indicated in

Fig. 1. The solid circles indicate the predicted attractors of the deterministic LPA model (1), as seen in Fig. 1.
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of the variability in the L-stage and 99% of the variability in the P-stage across all treatments. 3 The an-
alyses also show that the demographic noise model (2) better describes the experimental data than does the
environmental noise model (3). Con®dence intervals for the parameter estimates were computed using a
bootstrapping technique. The results (based on the demographic noise model (2)) appear in Table 1. A full
report of these analyses appears in [11].

From the bifurcation diagram in Fig. 3 we see a variety of attractors are predicted by the deterministic
model (1) for the selected cpa values. A complete discussion of the results at each cpa value appears in [11].
Fig. 4 illustrates the results of the experiment in the two cases cpa � 0:00 and 1:00. The graphs compare
experimental data, deterministic attractors of (1), and the stationary distributions of (2). Fig. 4 illustrates
graphically how well the demographic noise model predicts the long term dynamics of the beetles and how
much the deterministic attractor in¯uences those dynamics. Furthermore, the experimental data plotted in
Fig. 4 clearly corroborates the model predicted transitions, both deterministic and stochastic, as cpa is
changed from 0.00 to 1.00.

A complicated array of bifurcations and attractors occurs for values of cpa between 0.00 to 1.00 (Fig. 3),
including, as we shall see in the next section, chaotic attractors.

5. The chaotic attractor

The deterministic LPA model (1) has a global, chaotic attractor when cpa � 0:35 (with la � 0:96 and
the parameter values listed in Table 1). The dominant Lyapunov exponent of the attractor [23] is 0.0959
with a 95% con®dence interval of �ÿ0:066; 0:100�, 4 and a non-integer ``fractal'' Lyapunov dimension [23]
of 1.26. We now focus our attention on this attractor and the data from this treatment of the experiment.
We note chaos is robust throughout the parameter con®dence intervals in Table 1; see Fig. 5 (also see
[11]).

The positive LE indicates that, on an average, the attractor has sensitivity to initial conditions, a
hallmark of chaos. A graph of the chaotic attractor, color coded to show sensitivity to initial conditions at
each point, appears in Fig. 6. The ``hot spot'', where orbits exponentially diverge at the greatest rate
(colored red), occurs when pupal numbers are high and adult and larval numbers are both low. Sensitivity
to initial conditions can also be measured for the stochastic LPA model (2) by using the stochastic
Lyapunov exponent (SLE) [24]. The SLE is calculated by averaging over the stationary distribution for the
stochastic model (2), while the LE is averaged over the attractor of the deterministic model (1). Using the
estimates for the variance±covariance matrix R in Table 1, we calculated the SLE of (2) to be 0.053, with a
95% con®dence interval of �0:049; 0:055�. A color-coded representation of the stationary distribution is
illustrated in Fig. 7. This is the predicted distribution of data points for the cpa � 0:35 treatment of the
experiment.

Table 1

Parameter estimates for the deterministic LPA (1) model were obtained using data from an experiment in which cpa was held ®xed and

la � 0:96 a

Parameter CLS estimate 95% Con®dence interval

b 10.45 �10:04; 10:77�
ll 0.2000 �0:1931; 0:2068�
cel 0.01731 �0:01611; 0:01759�
cea 0.01310 �0:01285; 0:01340�

a Estimates for the entries in the variance±covariance matrix R for the demographic stochastic model (2) are r11 � 2:332, r
22
� 0:2374,

r12 � r21 � 0:007097. For this experiment R is a 2� 2 matrix since, by the experimental design, the third equation in (1) is exact and

hence E3t � 0 for all t.

3 The A-stage is e�ectively deterministic due to the experimental protocol of controlling la and cpa.
4 The remaining two Lyapunov exponents are ÿ0:370 and ÿ6:00.

J.M. Cushing et al. / Chaos, Solitons and Fractals 12 (2001) 219±234 225



The three replicate cultures grown at cpa � 0:35 have been continued and are (at the time of writing) over
240 weeks old. In order to obtain even more data for this treatment, we initiated six new replicates at 80
weeks. These data are plotted in Fig. 8 (with transients during the ®rst 20 weeks removed).

The remarkable accuracy of the model predictions, as quanti®ed by the analyses in [11], is visually
apparent in Figs. 7 and 8 where the distribution of experimental data points in phase space is virtually
indistinguishable from the stationary distribution predicted by the demographic noise model (2). When the
experiment is ®nally terminated, we will conduct comparison studies of these distributions as further tests of
model accuracy.

Fig. 5. A pie chart showing the frequency of predicted deterministic attractors at the treatment cpa � 0:35 for the 2000 bootstrap

parameter estimates (see Fig. 3).

Fig. 4. The upper graphs show the attractor predicted by the deterministic LPA model (1) together with experimental ¯our beetle data

(open circles) for two treatments of the experiment, cpa � 0:00 and cpa � 1:00. Transients have been removed. For the treatment

cpa � 1:00 data is shown for weeks 40±80. The model predicts longer transients for the treatment cpa � 0:00 and data is shown for

weeks 64±80. For purposes of comparison, the same number of points from the stationary distribution of the demographic noise LPA

model (2) is shown in the lower graphs. The attractor for the treatment cpa � 0:00 appears as two points (and hence as a 2-cycle), but in

actuality consists of two very small invariant loops. The attractor for the treatment cpa � 1:00 is a 6-cycle which consists of three

groups of two nearby points. In both cases note the similarity between the experimental data (upper graphs) and the predicted data

points of the demographic noise model (lower graphs), and how closely both are related to the predicted deterministic attractor.
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Although the predicted dynamics on the deterministic attractor are chaotic, there are distinctive tem-
poral patterns in the time series. These patterns are predictions of the deterministic model and corrobo-
ration can be sought in the experimental data. At cpa � 0:35, there exists an unstable saddle cycle of period
11 on the chaotic attractor (Fig. 9). The source of this cycle is an Arnol'd tongue of 11-cycles, with rotation
number 4:11, emanating from the curve of invariant loop bifurcation points in the �la; cpa� parameter plane
[25] (Fig. 10). Note that this 11-cycle exhibits oscillatory patterns of shorter lengths. For example, in Fig. 9
a plot of the L component of the 11-cycle shows four peaks per period and a distinctive sub-pattern of
length 3 (a high-low-low pattern). These patterns are also observed in the model time series of chaotic orbits
on the attractor. For example, in Fig. 11 we observe a frequently occurring pattern of length 11 (with four
peaks) in the time series of the L component of such an orbit ± a pattern that is remarkably similar to that
of the saddle 11-cycle. Moreover, this pattern occasionally appears in successive repetitions that form
episodes of near periodicity.

Fig. 6. The chaotic attractor for the deterministic LPA model (1) with la � 0:96, cpa � 0:35 and other parameters given in Table 1.

This ``tangled triangle'' attractor is color-coded using the log magnitude of the largest eigenvalue of the Jacobian matrix (the ``one-step

local Lyapunov exponent''), which ranges from ÿ1:031 (yellow) to 3.9520 (red).
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That the saddle 11-cycle has a dominant in¯uence on the dynamics of the chaotic attractor [25] is also
evidenced by the similarity between the power spectrum of the L component of the 11-cycle and that of
the attractor shown in Figs. 9 and 12A, both of which show dominant peaks at the base period
11=4 � 2:75. Power spectra of the L component of orbits obtained from the demographic noise model (2)
indicate this base period, and hence the sub-pattern of length 3, survives the demographic noise (as
parameterized in Table 1); see Fig. 12B. This model prediction is borne out by the experimental data,
which exhibits a distinctive sub-pattern of length 3; see Fig. 12C. However, the larval four-peak pattern,
and hence the 11-cycle pattern, are considerably blurred by the noise in both the demographic noise
model and the data. At the conclusion of the experiment we will thoroughly study these (and other)
model predicted patterns and analyze their occurrence in the data as part of the further documentation of
the LPA model's accuracy.

Fig. 7. 7500 points are shown from the stationary distribution of the demographic noise model (2) with parameters from Table 1 and

la � 0:96, cpa � 0:35. Also shown is the chaotic attractor of the deterministic skeleton (see Fig. 6). The points are color-coded using the

log magnitude of the largest eigenvalue of the Jacobian matrix at the point (the ``one-step local Lyapunov exponent''), which ranges

from ÿ2:742 (yellow) to 4.723 (red).
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Fig. 8. Data from all replicates of the cpa � 0:35 treatment are shown with transients removed.

Fig. 9. An unstable 11-cycle on the chaotic attractor in Fig. 6 is shown. Also shown is the L component time series and its power

spectrum.
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6. Discussion

The argument that the beetle populations in our experimental treatment at cpa � 0:35 are chaotic is
based on the accuracy of the LPA model (1). Our con®dence in this model is supported by a variety of
successful validations. Foremost are the many statistical tests we have performed using data from several
experiments, in addition to the bifurcation/chaos experiments described above. We have used the LPA
model to provide previously unavailable explanations for observed patterns in data or suggested patterns
previously unobserved, including temporal and phase space patterns caused by stable manifolds of unstable
saddles [6,12], phase switching in oscillating populations [13], and unexpected resonances due to periodic
habitats [15,16]. Also supporting the model's accuracy is its ability to predict, a priori, dynamic patterns
subsequently observed in laboratory experiments, such as the bifurcations and attractor patterns in the
experiments described above. For other examples of the a priori predictive capability of the model, see
[14,26].

Our studies comparing model predicted dynamics with data, whether they deal with exotic dynamics
such as chaos or other seemingly less important dynamic patterns, serve at least two important purposes.
First, they add to the catalog of nonlinear phenomena rigorously documented to occur in a biological

Fig. 10. Selected Arnol'd tongues and their rotation numbers are shown in the �la; cpa�-plane for the LPA model (1) with parameters

given in Table 1. Globally stable, positive equilibria occur in the region marked S.E. Invariant loop bifurcations occur when the

boundary of the S. E. region denoted by the dotted line is crossed. Period doubling bifurcations to a 2-cycle occur when leaving the SE

region along the common boundary with the region marked 1:2. The experimental treatment with la � 0:96 and cpa � 0:35 (denoted by

the black dot) lies in the tongue of 11-cycles with rotation number 4:1.
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population, and by doing so they demonstrate the importance of nonlinear dynamics in ecology. Second, as
they accumulate, these studies provide stronger and stronger support for the validity of the LPA model (1)
and therefore to biological conclusions based on that model.

For example, we recently implemented another experiment designed to further document the accuracy of
model (1), and the properties of its predicted chaotic attractor, in describing the dynamics of ¯our beetles in
the treatment at cpa � 0:35. The experimental design is based on a speci®c characteristic of the chaotic
attractor. As the color coding in Figs. 6 and 7 indicates, the region of the attractor most sensitive to initial
conditions consists of points with a moderate number L of larvae (say, L6 150) and very low number A of
adults (say, A6 3). Numerical explorations using (1) revealed an unexpected consequence of the existence
of this ``hot'' region of the attractor. If, whenever an orbit enters this region, a small perturbation is applied,
the resulting long term dynamics are changed in signi®cant ways. Speci®cally, if only three adults are added
each time the orbit enters the hot region, then the number of larvae is decreased, on an average, over 50%
and the peak amplitudes of larval numbers are reduced nearly 70%. A similar prediction is also made if the
perturbation rule is applied to orbits of the stochastic model (2). Data for the ®rst 26 weeks of the ongoing
experiment indicate the model prediction is indeed accurate: small perturbations in adult numbers have a
large impact on population abundance.

7. Concluding remarks

Well-validated models such as the deterministic LPA model (1) are rare in population biology. The LPA
model therefore provides an unparalleled opportunity to explore and to rigorously document nonlinear
phenomena in ecology, at least in a laboratory setting. Nonetheless, noise pervades ecological data and is
signi®cant even in our highly controlled experiments. Since no model can capture all mechanisms a�ecting a
population, data inevitably deviates from deterministic model predictions, even in the absence of census
errors. It is therefore necessary to account for noise with a stochastic model such as (2) or (3). Unfortu-
nately, the use of stochastic models raises questions concerning the meaningfulness of deterministic con-
cepts such as chaos, or for that matter even equilibria or periodic cycles. Stochastic models do not have
deterministic attractors; they have stationary distributions which generally predict that a large portion, if

Fig. 11. In graph (A) the L component of a portion of a 10,000-point orbit on the chaotic attractor of the deterministic model (1)

shows frequent patterns similar to those of the saddle 11-cycle in Fig. 9. In graph (B) is seen a portion of the orbit during which the

pattern is repeated many times in sequence.
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not all, of phase space is visited with probability 1. Strictly speaking, a stochastic model cannot exhibit
equilibria, periodic cycles or chaos.

Our approach to this issue is to validate a model whose deterministic skeleton can be shown, in
quanti®able ways [11], to greatly in¯uence the stationary distribution of the stochastic model and the
temporal dynamics of the stochastic orbits. In this way, we conclude that the dynamics of the ¯our beetles

Fig. 12. Graph (A) shows the L component of an orbit on the chaotic attractor of the deterministic model (1) and its power spectrum.

Graphs (B) show the same for an orbit of the demographic noise model (2). Graphs (C) show the L component of one replicate of the

experimental data for treatment cpa � 0:35 and its power spectrum.
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in our experiments are largely explained by known deterministic factors. It is in this sense that we mean
their dynamics have deterministic properties and features, such as an equilibrium, a periodic cycle, etc. In
particular, when we say the dynamics of the beetle cultures in the treatment cpa � 0:35 are ``chaotic'', we
mean the dynamics are largely explained by a chaotic attractor of a deterministic model.

Our approach of identifying a deterministic skeleton preserves the de®nition of chaos as a deterministic
concept, even though our biological system is stochastic. In so doing, we avoid the confusion arising from
notions that mix chaos with stochasticity (e.g. ``stochastic chaos'' and ``noise induced chaos''). We do not
rely on insu�cient diagnostic tests for chaos such as a positive SLE. 5 While a positive SLE estimated from
our data would provide a measure of sensitivity to initial conditions and corroborating evidence of a known
chaotic attractor of a validated deterministic model, a positive SLE alone would not be su�cient to provide
convincing evidence of chaos [27].

Our experiments are manipulative laboratory experiments. However, the laboratory conditions are not
unlike those of ``wild'' populations of ¯our beetles growing in stored grain containers. Nor are the ma-
nipulations, resulting in high adult mortality and low adult recruitment, unrealistic perturbations; they
might occur for any number of reasons (for example, a pest management strategy). Nonetheless, it remains
to be investigated what implications the demonstration of chaos in a laboratory setting might have for
populations in natural settings. What can be said is that we have now, for the ®rst time, an unequivocal
example of chaotic dynamics in a biological population [4,28] and that this example provides a baseline for
further studies of chaos in ecology.
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