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27.1 Introduction

Understanding the effects of spatial processes on population dynamics is essential to the advancement
of the science of ecological modeling. Inclusion of spatial processes in a model can significantly alter
the dynamic predictions made by nonspatial models. Although models that allow for spatial interactions
can provide insights into ecological dynamics, there are difficulties as well. It can be difficult to deduce
the relative importance of underlying mechanisms causing the altered dynamics from simulation results
without the tools of mathematical analysis. Also, confirming that the computer code driving the model
is working, is a nontrivial task. As additional complexity is added to increase realism of the model, these
tasks increase in difficulty. Using different model types to represent the dynamics under study can provide
both additional ways to test that models are working correctly and to better understand the various
mechanisms contributing to the system dynamics.

When choosing a model for use in a research project, it is important to make sure that the model class
can represent all the important dynamic interactions in the system. A model class can loosely be defined
as a group of models that all have the same underlying structure. Within this grouping, models based
on differential equations are a model class, as are all deterministic models. Model classes are often
described along Holling’s gradient with end points strategic (very general), such as ordinary differential
equation models (ODE), and tactical (very specific), such as agent-based models (ABMs). However,
this is not always an accurate way to partition different model classes. Instead, we look at the relative
ease of design and analysis against the assumptions inherent in the structure of the model class. We use
a sliding scale of simplicity to complexity of model class. At one end of the scale are models that are
simple to design and analyze but have very restrictive assumptions; on the other end are models that are
difficult to design and analyze but remove constraints of simple model classes.

A key to understanding the difference between model classes is recognition of implicit model assump-
tions. All models involve explicit and implicit assumptions. Explicit assumptions are the mechanisms
chosen by the researcher to simulate the various dynamics involved in the system under study. These
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are, for the most part, independent of the class of model used. Examples of these are logistic vs.
exponential growth, and Type I, II, or III functional responses.

 

1

 

Implicit model assumptions are those that characterize the model class. A good starting point for a
discussion of implicit model assumptions are the Lotka-Volterra predator–prey equations. These are a
well-known example of the ODE class of models. The two most significant implicit assumptions of the
Lotka-Volterra models (and in fact, any ODE model) are, first, that the system is “well mixed,” that all
individuals are identical and all individuals experience identical conditions; and, second, that there are
enough individuals that demographic stochasticity has minimal effect on the population dynamics. In
natural systems, these two assumptions are usually mutually exclusive. Spatial scales small enough to
guarantee a homogeneous environment can host only small populations and are therefore potentially
subject to strong demographic stochasticity. Spatial scales that can maintain populations large enough
to minimize demographic stochasticity are seldom homogeneous. The combination of these two assump-
tions in a single model can be restrictive.

How then can we determine what type of model class should be used for what situation? Choosing
the model class at the beginning of the project on the basis of projected system dynamics is often not
a good option. This is particularly true when dealing with potentially complex spatial processes where
the interactions in time and space at different scales can cause the dynamics to deviate from linear
predictions.
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 In contrast, using a complex spatial model to analyze basic system behavior such as
potential equilibria and sensitivity analysis is seldom practical because of the slower speed of the
simulations and the stochasticity inherent in the results. Therefore, we need some way to evaluate different
models against the system we wish to simulate to ensure we are using the correct tools for the job.

In this chapter we describe four complementary model classes and their interrelations. We then
introduce four models of an intertidal predator–prey system, each of which represents one of the four
model classes. We use some of the results from our testing of the four models to demonstrate a few of
the advantages of our multiple model approach. The focus of this chapter is on model comparisons; later
work will attempt to match model results to natural systems.

 

27.2 Four Model Classes

 

The properties of the ODE class of models are well known. Aside from the implicit assumptions previously
discussed, there are two important properties of ODEs for the purposes of this chapter. First, there are a
wide range of analytical and numerical tools available that allow detailed analysis of the dynamics of the
system. Second, simulations of ODE-based models are fast when compared to their more complex
counterparts. Because of this, ODE models provide an excellent baseline for modeling projects.

The stochastic birth–death (SBD) model class removes the restriction that demographic stochasticity
is negligible while still requiring that all spatial processes be “well mixed” and that all individuals are
identical. We spend a bit more time on SBD models because they are powerful but seldom-used additions
to the modeler’s tool kit. SBD models are generally defined using an underlying deterministic model.
To construct an SBD, two changes are made to the deterministic model. The first is that the state variables
are constrained to integer values (but see the SBD model later in this chapter for a specific exception
to this rule). This represents a more realistic view of populations, as changes in population size occur
through loss or gain of individuals, not pieces of individuals. Second, the terms of the deterministic
equation are redefined as the probabilities of an increase or decrease in the population per unit time.
This represents the unpredictability in natural populations of exact times between individual births and
deaths. The random distribution applied to these probabilities is usually either the Poisson (number of
state changes in a fixed time interval) or the negative exponential (time to next state change). These two
distributions are used because they are memoryless; that is, the next state is dependent only on the
present state and no other history is required. This choice of distribution matches the memoryless
assumption present in ODE-based deterministic models.

Detailed examples of designing more complex SBD models are given in Donalson and Nisbet,
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Renshaw,
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 Nisbet and Gurney,
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 and in the second part of this chapter. However, a brief example is useful
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here. We look at a simple birth/death process whose deterministic representation is the ODE 
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that the chance of multiple state changes within the time interval be negligibly small. Alternately, instead
of solving for 
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, the time to the next state change. The probability distribution
of possible times to next event is then memoryless with mean 1/
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 provide the formula for the memoryless distribution of possible times given
a mean time as –ln(
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[0,1] is a uniform random number generated between 0 and 1.
In this example the stochastic time to next state transition is then the shorter of –ln(
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). Note that we can now simply advance from one state change to the next by
calculating the two possible times to the next state change, advancing time to the shorter of the two
times, and then executing the appropriate state change. This formulation is possible because these
probabilities are independent of each other and of state changes at previous times. This is called a

 

continuous time

 

 or 

 

event-driven

 

 model and is used in the construction of two of the four models described
in this chapter. SBD models are only slightly more difficult to construct than deterministic models, but,
because their predictions are probabilistic, one must also deal with statistical properties in their analysis.

Cellular automata (CA) are a class of models that relax the requirement that space be “well mixed”
and allow explicitly for the presence, in some form, of individual entities. This class of models uses
many of the same ideas as SBD models and is relatively easy to construct. Space is now included in the
model explicitly as a grid of cells, and, unlike the ODE and SBD models, the focus of state changes is
the individual cell as opposed to the population. The probability transitions described for the SBD model
are applied to each cell with the added feature that the transition probabilities for the next state of a cell
is not only dependent on its present state but also a function of the states of some set of its neighbors.
Space is double-buffered meaning that there are actually two alternative cellular grids. One grid represents
the present state and the other the next state. The next state for each cell in the present grid is recorded
in the next state grid. When this is completed, the next state grid becomes the new present state grid,
and the grid that was the present becomes the next state. Analyses of CA models are at a level of difficulty
beyond that of SBD models because the effects of nonrandom spatial patterns may have to be included
in analysis of the dynamics.

There are implicit assumptions regarding space and individuals in the CA class of models. A cellular
array consists of a fixed number of locations. This means that, by default, in the special case of one
individual per lattice site, the system has a carrying capacity that is equal to the number of cells. Because
space consists of an array of cells, there is also fine-gained quantization of space. Thus, there is a
minimum scale at which interactions can occur. Individuals are represented in their simplest form, just
a set of discrete states.

Agent-based models (sometimes also referred to individual-based models) are a class of model that
can, potentially, remove all implicit assumptions from the model structure. This class of model can be
conveniently described in three parts: the agents, the infrastructure, and the interface (AI
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). The agents
are typically the entities that comprise the populations of the state variables in a deterministic model.
The infrastructure comprises the implementation of space and time. The interface is the system input
and output, displays, internal data analysis procedures, etc.

There are two ways space can be represented in an ABM. Discrete space is similar to that of the CA
model; however, the focus of interaction is now the individual, not the cell, so the cell now just represents
some aspect of environmental space. Space can also be represented as continuous, where the position
of an individual is represented by a real-valued 

 

X

 

,

 

Y

 

 coordinate pair. Time can be implemented as either
discrete or continuous. In the case of continuous time, state transitions for individuals are inserted into
or removed from a time-ordered event schedule, and, like the SBD, time is advanced from one event to
the next. Because state transitions are now tied to the individual agent, the 

 

per capita

 

 rate as opposed
to the total rate is used to calculate the time to state transition.
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ABMs can be quite difficult to code and verify. In addition, given a result, deducing the contributions
of the various underlying mechanisms is not trivial. In contrast, if we believe that individual behavior,
in all its forms, is a contributing factor to population dynamics, this class of model must become part
of the modeler’s tool kit.

Each of the aforementioned class of models has strengths and weaknesses. On the gradient described
earlier, as we move in the direction of more complex model classes, the ability to represent more complex
interactions increases. However, the analysis of results and, in particular, the ability to isolate the relative
strength of the contributions of the underlying mechanisms to the dynamic outcomes becomes far more
difficult. Comparing and contrasting the results of different model classes can mitigate many of these
problems. As discussed previously, each model class has some advantage of “realism” gained from
removing an implicit assumption, with the negative trade-off of new technical challenges and more
difficult analysis of results. We advocate multiple model analysis for two purposes, model verification
and results validation, in a similar (but not identical) manner to Rykle.9 Model verification is confirming
that the code/equations that comprise the structure of the model are working as intended. We use the
term validation, in its most general sense, to describe the analysis of the dynamic results once verification
is completed. In general, a more complex model can be configured to match the implicit assumptions
of a simpler model for the purposes of verification. Comparing the results of a simple model to a complex
counterpart can validate or invalidate its use of implicit assumptions associated with the simpler model.
And, using simpler models to factor out various mechanisms can help decompose complex results into
the individual contributions of different mechanisms.

We now introduce an experimental system of mussels and their predators. We use the four previously
described model classes to assist in our understanding of the dynamics of this system.

27.3 Mussels in the Intertidal Zone

The mussel Mytilus californianus is a dominant species of the intertidal zones of the North American
continent. This species is found in narrow bands in shore sites of moderate to high wave exposure. The
predators of M. californianus are the seastar, Pisaster ochraceus, in the Pacific Northwest,10,11 and the
spiny lobster, Panulirus interruptus, in Southern California.12,13

The ecology of mussel communities has been studied for over five decades. Early experiments
suggested that the lower limits for M. californianus are set by predation and the upper limits are set by
physical factors such as intolerance to dessication.10,14 Thus, mussels experience a spatial refuge from
predation at the upper intertidal zone. Paine11 observed that below the upper intertidal zone there were
patches of very large mussels that escape predation. This fact and the observation that seastars eat mussels
smaller than the maximum available size suggested that mussels reach a certain size and become resistant
to predation; this represents a “size refuge” hypothesis. More recent experiments emphasized supply-
side effects,15 suggesting that variation in recruitment rates is a source of variation in the adult populations,
and recruitment produces feedback effects in the processes of competition and predation (see discussion
in Robles and Desharnais16).

Later studies contradict the hypotheses of spatial and size refuges. In Southern California, time-lapse
photography has revealed that spiny lobsters enter the upper intertidal zone at night and consume the
mussels vertically along the shore.12,17 Similar behavior was observed in the Pacific Northwest;13 seastars
move with the tides and are found foraging above lower boundaries of mussel beds. Also, experiments
have shown that concentrations of adults mussels that occur above lower shore levels of the most wave
exposed locations appear to result as much from the elevated rates of recruitment in these locations as
from the impact of hydrodynamic stresses and tidal exposure on predator foraging.18 It appears that the
refuge hypothesis is an oversimplification of a more complex situation.

Mussel growth depends on the flow of water providing food, resulting in higher growth rates for
mussels located lower in the intertidal zone and on wave-exposed shores.19 The probability of being
attacked by a predator decreases when a mussel is surrounded by larger mussels.11,20–22 Thus, the rates
of production and mortality in any specific location depend on the locations of a mussel in the gradients
of tidal height and wave exposure and on the size and density of surrounding mussels. These observations
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suggest the need for a new theoretical synthesis that will study rates of recruitment, growth, and predation
mortality as a dynamic spatially explicit process.

We have developed a multiple-model approach to the study of predation in benthic communities. Four
classes of models have been developed and analyzed, one from each previously discussed model class:
(1) an analytical “mean field” approximation consisting of ODEs, (2) an SBD version of the mean field
ODE model, (3) a CA model, and (4) an ABM. A set of model parameter values will be common to all
four model types. Comparison and cross-validation can be made among models to take advantage of
the strengths that each has to offer.

Our ODE model is based on the work of Nisbet et al.23 where “space” is made up of a large number
of very small “patches” that can be occupied by at most one mussel (algae in their model) and predators
(“grazers” in their model) that move randomly among patches. Prey biomass grows in size in each patch
until a predator grazes a patch to size zero. In Nisbet et al.,23 as soon as grazers remove the algae from
a patch there is algal regrowth. In our model each patch is either empty or occupied by a mussel. This
model is given by a pair of differential equations:

, (27.1)

, (27.2)

where n(a, t) is the density of prey of age a at time t and P(t) is the density of predators. The first
equation is the McKendrick–von Foerster model24,25 for aging and death in an age-structured population
where µ(a, t) is mortality rate for prey of age a at time t. We assume prey settle at a constant rate σ into
empty patches, but the overall recruitment of prey decreases linearly until all available space is occupied
at a maximum density K. This yields n(0, t) = σ[1 – N(t)/K] as the boundary condition for new prey. In
this open system, predators immigrate at the constant rate I and emigrate at the per capita rate eP(t),
which may depend on the age and size structure of the prey population.

Prey size plays an important role in the predator–prey dynamics. We let s(a) represent the size of a
prey of age a and describe growth using the von Bertalanffy26 formulation s(a) = s∞ – (s∞ – s0)e–βa,
where β is the growth rate, s˚ is the maximum size, and s0 is the size of a newly settled recruit. We assume
each prey’s vulnerability to predation depends on its size and the density and size of prey in some spatial
neighborhood of radius h surrounding the individual. In our mean field approximation, we assume that
the size of the neighborhood h = ∞, and define S(t) = ∫s(a)n(a,t)da as the mean size of prey weighted
by prey density. We write the mean field approximation for the per capita mortality rate of prey as
µ(a,t) = µ0 + θP(t)e–cS(t), which is independent of prey age but decreases exponentially with the weighted
mean size of prey, S(t). The parameter µ0 is the mortality rate due to causes other than predation, θ is
the predator attack rate, and c is a measure of how quickly resistance to predation increases with prey
size. For predators, we assume that their emigration rate from the system is inversely proportional to
the per capita rate of prey consumption; we use eP(t) = e0[θe–cS(t)]–1, where e0 is the constant of
proportionality relating prey consumption to predator emigration. Defining N(t) = ∫n(a,t)da as the overall
prey density and taking the time derivative of S(t), we can replace Equation 27.1 with a pair of ODEs
yielding the system of three ODEs given in Table 27.1. (Details of this derivation are available in
Desharnais et al., in preparation.) This system of equations is our ODE mean field approximation model.

The SBD model is a probabilistic version of the ODE model. Prey and predator densities are treated
as discrete system variables. The dynamics are modeled as series of four possible transitions: the
recruitment or death of a prey or the immigration or emigration of a predator. The time interval ∆t
between transitions is a continuous random variable chosen from a negative exponential probability
distribution with an expected value that is the inverse of the transition rates. The transition rates follow
from the ODE model.

Because it is a model of demographic stochasticity, the SBD forces us to consider the scale of the
process being modeled. Transitions will occur much more frequently in a large system than in a small
one. An additional parameter A must be used to represent the total size of the area being modeled. Since
our system variables N(t) and P(t) are densities, the total numbers of prey and predators are AN(t) and
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AP(t), respectively. These quantities increase or decrease by one, or, equivalently, the variables N(t) and
P(t) may increase or decrease by an amount A–1 at each transition. The transition rates are just the rates
from the ODE model multiplied by A. The transitions and their rates are given in Table 27.1.

Prey growth presents a complication. Because size is a continuous variable, we must increment the
system variable S(t) by an amount that represents the growth of all prey during the time interval ∆t.
Fortunately, the von Bertalanffy growth model has the convenient property that if si(t) is the size of an

TABLE 27.1

ODE and SBD Models and Parameters

ODE Model

State Variables Equations

S(t) ≡ weighted mean prey size
(mm prey area–1)

N(t) ≡ prey density
(prey area–1)

P(t) ≡ predator density
(predator area–1)

Stochastic Birth–Death Model

Transition Transition Rate State Changes

Prey recruitment

Prey death

Predator immigration AI

Predator emigration 

Prey growth

Model Parameters

Symbol Definition Default Values and Units

Area Unit area (one “cell”) 25 cm2

A Total system area 4 × 104 units of area
t Time 1 day
a Age 1 day
s Prey recruitment rate 1 prey area–1 day–1

s0 Size of newly settled prey 1 mm
s˚ Maximum prey size 200 mm
b Decrease in prey growth rate with size 0.0004 day–1

µ0 Background per capita prey mortality rate 0.0001 day–1

K Maximum prey density 1 prey area–1

q Predator attack coefficient 1.0 unit area predator–1 day–1

c Resistance to predation with prey size 0.04 unit area mm–1

I Predator immigration rate 0.01 predator area–1 day–1

e0 Predator emigration constant 5.0 mm predator–1 day–2

dS

dt
s s s K N t P t e S tcS t= + −( ) − + +( )∞

− −
0 0

1
0σ β σ β µ θ( ) ( ) ( )( )

dN
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K P t e N tcS t= − + +( )− −σ σ µ θ1

0 ( ) ( )( )

dP

dt
I e S t e P tcS t= − ( )− −

0

1
θ ( ) ( )( )

A
K N t

K
σ −





( ) N t t N t A( ) ( )+ = + −∆ 1

S t t S t s A S( ) ( )+ = + +−∆ ∆0
1

A P t e N tcS tµ θ0 +( )−( ) ( )( ) N t t N t A( ) ( )+ = − −∆ 1

S t t S t S AN t AN t( ) ( ) ( ) / ( )+ = +( ) −( ) ( )∆ ∆ 1

P t t P t A( ) ( )+ = + −∆ 1

S t t S t S( ) ( )+ = +∆ ∆

Ae S t e P tcS t
0

1
θ ( ) ( )( )− −( ) P t t P t A( ) ( )+ = − −∆ 1

S t t S t S( ) ( )+ = +∆ ∆

∆ ∆S N t s S t e t= −( ) −( )∞
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individual i at time t, then the average size  of all individuals follows the same growth equation as
for a single individual: . Since S(t) is mean size weighted by density,

, and we obtain the expression for the increment ∆S due to growth given in Table 27.1.
For a prey recruitment transition, we also add the size of the new recruit divided by the total area, s0A–1.
Unlike the ABM, individuals are not tracked in an SBD, so for a prey death transition, we decrease
(S(t) + ∆S) by an amount equivalent to the loss of one prey of average size; this amounts to multiplying
by (AN(t) – 1)/(AN(t)).

Implementation of the SBD is fairly straightforward. A random time to the next transition is computed
for each of the four possible transition types by generating a uniform random number, taking the
negative of the natural logarithm, and dividing by the transition rate. The smallest of the four transition
times determines ∆t and the type of transition that occurs. Time is advanced to t + ∆t and the state
variables are modified according to the transition rules. This process is repeated until a final simulation
time is reached.

In the CA model space is represented explicitly as a rectangular grid of cells, where each cell has one
unit of area and A is the total number of cells. Each cell represents a potential site of occupation by an
individual prey. Because only one prey can occupy a cell at any time, we explicitly assume that there
is no intraspecific competition for space among growing prey; an easily overlooked implicit assumption
of the ODE and SBD models.

The recruitment, growth, and death of prey are modeled as transitions among “cell states.” Each cell
is denoted by its x,y coordinates in the grid and the state of a cell is represented by an discrete variable
Sxy(t). We use Sxy(t) = 0 to indicate an empty cell, Sxy(t) = s0 for a cell with a new recruit, and Sxy(t) = s˚

for a cell with a prey at the maximum size. The size range [s0, s˚] is divided into m discrete increments,
where m is chosen large enough to approximate continuous growth. Time is advanced in discrete steps
∆t and all cell transitions occur simultaneously. Prey recruitment is represented as a transition from Sxy(t)
= 0 to Sxy(t + ∆t) = s0. Prey growth is represented as a transition from Sxy(t) = s to Sxy(t + ∆t) = s + ∆s,
where ∆s ∏ 0. Prey death is represented as a transition from Sxy(t) = s to Sxy(t + ∆t) = 0 for s > 0. An
additional “global variable” P(t) represents the density of predators.

At each time step, cell transitions occur with probabilities that are derived using the rates specified
in the ODE model (Table 27.1). For example, if ∆t is sufficiently small, the probability that an empty
cell will receive a recruit is given by σ∆t. Similarly, the probability that an occupied cell x,y becomes
empty due to prey death is given by 

, 

where

is the mean of the prey sizes in a neighborhood of (2h + 1) × (2h + 1) cells centered at x,y. (At the sides
and corners of the lattice, Sxy,h(t) is the mean of the subset of neighboring cells within the system.) If h
= 0, then Sxy,0(t) = Sxy(t) and the neighborhood is the cell x,y itself. When h = ∞, then Sxy,∞(t) = S(t) and
we have the mean field approximation of the ODE and SBD models.

Prey growth is also treated as a stochastic process. For a prey of size s, the expected increase in size
λs is given by the differential form of the von Bertalanffy model: . The expectation λs

is then used as the mean parameter in a Poisson probability function to determine the actual increase in
size ∆s for each prey. In rare cases when s + ∆s > s∞, we set ∆s = s∞ – s.

Predator immigration and emigration are treated as a random birth–death process. The number of
predators that enter the system at each time step is chosen from a Poisson distribution with a mean value
AI∆t. Each predator in the system at time t either leaves the system with probability eP(t)∆t or remains
with probability 1 – eP(t)∆t. Assuming each predator makes its decision independently, we use a binomial
distribution to determine the loss of predators. In the ODE model we assume that the per capita
emigration rate eP(t) is inversely proportional to the predator’s per capita consumption of prey. The same

s t( )
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assumption is used in the CA model, except the actual loss of prey biomass density to predators during
the previous interval, SP(t), is computed by summing the sizes of the individual prey consumed by predators
and dividing by the system area A. The emigration rate is then computed using eP(t) = e0[P(t)∆t/SP(t)],
where the term in square brackets is the inverse of the per capita rate of prey consumption by predators.
In rare cases when SP(t) = 0, the probability that predators leave the system is set equal to one.

We use the AI2 method to describe our ABM; however, as the interface is not germane to this discussion,
it is not included.

In our ABM model, space is represented as a rectangle of area A. The boundaries are reflecting in
the sense that predator movements are modeled as discrete jumps, but predators are not allowed to
jump outside the system boundaries. (However, there is predator immigration into and emigration from
the system across the boundaries.) The default space is continuous as opposed to the more common
grid-based approach. Individuals are allowed to reside at any X,Y coordinate as opposed to the center
of a grid cell.

State changes in the ABM model are tied to the individual. Each agent has a number of potential
changes, such as feeding, death, or emigration. The times to each of these potential state changes are
calculated using the per capita rates from the SBD model. All the times (with their associated individual
and type of state change) are inserted into a time-ordered list called the event schedule. The next event
(state change) is the one with the shortest time, which is also the event at the top of the list. As new
individuals are added to the system their events are added to the event schedule, and, when an individual
is removed from the system, any remaining events tied to that individual are removed from the event
schedule. Finally, a predicted event associated with one individual can be altered by a change in another
individual, thereby altering a previously scheduled event.

Mussels recruit at a constant rate σ, multiplied by the total area of the system A. New recruits are
given a random X and Y pair of coordinates constrained to be within the system area and so that the
initial diameter of the recruit will not overlap an edge. They recruit at size s0 and are not allowed to
overlap another individual. By default, if the coordinates of a new recruit overlap those of another
individual, that recruitment is aborted and a new recruitment event is scheduled. There is also a
configurable option that allows for multiple attempts to recruit a single individual by redrawing the
coordinates a set number of times before aborting the attempt. Mussels are represented as circles and
size is equivalent to the circle diameter. Note that, unlike the CA model, many small individuals can be
packed into an area the size of one grid cell.

Mussels grow in the same manner as described for the SBD model. Because the ABM model uses
continuous space, spatial competition must be included in the model. In the CA model, a grid cell has
a diameter that is equal to the diameter of a full-grown mussel. As a result no two individuals can
overlap. At most, two neighbors will just touch when both are at maximum size. With continuous space,
this is not the case. Therefore, as a first cut at modeling spatial competition, we introduce the rule that
no two individuals are allowed to overlap. At the point where two neighboring individuals just touch,
they quit growing. The time at which this event occurs is computed explicitly from the von Bertalanffy
equations and added to the event schedule. They remain at this size until either the individual dies or
its neighbor dies. Upon the death of a constraining neighbor, an individual is allowed to resume growing.
Death occurs from either background mortality as described in the CA model or from predation, as
described later. Time to death from background mortality is chosen from a negative exponential distri-
bution with mean 1/_0 and added to the event schedule at the time mussel is recruited.

Predatory seastars enter the system at a constant rate IA and are placed at random within the
system boundaries. Unlike the mussels, overlap is allowed so no overlap check is necessary. All
predators are assumed to be the same size and there is no predator growth. When the predator enters
the system it is provided with a time in the future when it will leave the system using the equation

 and calculated using the present system state. At that time, the individual is removed from

the system, regardless of its location in space.
Seastars move randomly about the system in a series of jumps. Two random numbers U[0,1] are

generated. The first number is multiplied by the maximum distance that the predator is allowed to jump.
(Note that a maximum jump distance close to the dimension of the system simulates a well-mixed
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system, whereas a short jump distance allows for the possibility of local interactions affecting the system
dynamics.) The second random number is multiplied by 2π to generate the direction in which the predator
will move. The predator is then moved from its present position at the specified angle to the previously
calculated distance. If this moves the predator off the map, then a new movement vector is chosen.

Each time a predator lands at a new location it searches an area the size of one unit of space. All
mussels with centers that lie within this area are subject to attack. As with the CA model, the chance
of a successful attack is a combination of the predators intrinsic ability to feed θ, modified by the
protection provided by the mussel’s own size and those of its neighbors, e–cS(t).

To match the CA model, it was necessary to add an additional configuration option to the ABM model.
When an individual colonizes a grid cell in the CA model, it by default reserves the entire area of the
grid cell for its use. This is in spite of the fact that at size s0 it takes up only a very small part of the
grid cell. To match this assumption, a grid-based cell array was overlaid on space. The rule that all
individuals must “snap to” the center of each grid cell (the default discrete space requirement) and that
only one mussel could occupy each grid cell was then applied to the system.

27.4 Examples of Model Verification and Validation

We now compare and contrast some basic results from each of our four models. Our analysis follows
the general theme of this chapter. We first confirm that all models have the same basic behavior when
all are configured with the same assumptions. We then look at some of the implicit assumptions inherent
within each model and test them for robustness against the explicit results of a more complex model.
We start by describing the dynamics expected from well-mixed large population using the ODE model.

The ODE model provides the baseline for our model analysis. The predicted dynamics of this model
are summarized graphically in Figure 27.1. Setting dP/dt = dN/dt = 0, we can solve for the equilibria
P* and N* in terms of S. Substituting these expressions into the equation for dS/dt and setting dS/dt = 0,
one can show that the model equilibria are the real roots of the function f(S) = s0σ – (β + µ0)S – κS2e–2cS +

, 0 ≤ S ≤ s∞, where κ = Iθ2/e0. This function is plotted in Figure 27.1A for the

parameter values in Table 27.1 and three different rates of predation. In this case the model has two
stable equilibria and one unstable equilibrium. At the stable equilibrium S1

*, prey density and sizes are
kept low by high levels of predation. At the stable equilibrium S3

*, there is a high density of large prey
that are resistant to predation. The unstable equilibrium S2

* lies on a boundary separating the basins of
attraction of the two stable equilibria. When predation rates are low, only the upper equilibrium S3

* exists
(Figure 27.1B). When predation rates are high, only the lower equilibrium S1

* exists (Figure 27.1C). For
biologically feasible parameter values such as those in Table 27.1, there is no evidence of exotic dynamics
such as limit cycles or chaos.

Verification of the three stochastic models is demonstrated in Figure 27.2. In this case all three
stochastic models were configured to match the implicit assumptions of the ODE model. We tested three
elements here. The first is that the three stochastic models all converge to the same two stable equilibrium
values as the ODE. The second is that all three stochastic models move to the correct stable equilibrium
when they are started in that equilibrium’s basin of attraction. Last, it is useful to note that, qualitatively,
all the transient responses are similar.

There are two parts to our ODE validation. The first, testing the implicit assumption that demographic
stochasticity can be discounted at a scale reasonable for our research, is demonstrated in Figure 27.3.
Figure 27.3A shows ten realizations of the SBD model run at a system size that allows a total of 400
individuals (A = 400). Each run was started just above the unstable equilibrium (S2

*) with a different
random seed. As expected, the result is no longer deterministic, with three of the ten runs stabilizing at
the lower equilibrium. Figure 27.3B shows the chance that the time series will stabilize at the upper
equilibrium for a range of initial conditions about the unstable equilibrium for three different system
sizes. The probability converges rapidly toward the prediction of the ODE model even at the relatively
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small system sizes used in this experiment. This indicates that demographic stochasticity should not
have a significant effect on the steady state response at the default system size of A = 40,000 individuals
(but see Donalson27 and Harrison28 for counter examples.) Figure 27.3C and D demonstrate a significant
difference between the ODE and SBD, that is, the equilibria in the ODE are replaced by stationary
probability distributions for the system variables in the SBD. In our case, this result is far more
pronounced in the predator than the prey as demonstrated using the coefficient of variation (CV) of each
time series (CV of prey is 0.043, CV of predator is 0.431.)

The ODE assumptions break down when space is not homogeneous and when individuals are not
well mixed as shown in Figure 27.4. Figure 27.4A shows the mean field approximation for the neighbor-
hood effect at the lower equilibrium. There is little evidence of any heterogeneity when the size protection
for each mussel is calculated using the entire population (h = ∞). The same is true at the upper equilibrium
(Figure 27.5B), with the exception that there is more variation in size among mussels. In contrast, when
a mussel is protected by only its eight immediate neighbors (h = 1), occasionally a mussel escapes
predation long enough to become too large for seastars to handle and it becomes the center of an “island”
of protected individuals (Figure 27.4C). These islands can increase slowly in size and merge until the
system resembles the upper equilibrium in Figure 27.4B. On the other hand, at the parameter values in
Table 27.1, the ODE prediction of lower and upper stable equilibria holds well for moderate neighborhood

FIGURE 27.1 The ODE model predictions over a range of values of the predator attack coefficient, θ. The remaining
parameters have the values given in Table 27.1. S1

* is the lower stable equilibrium, S2
* the middle unstable equilibrium,

and S3
* the upper stable equilibrium. (A) Two stable equilibria are present when the predator attack rate is at an intermediate

value (θ = 1). (B) When the predator attack rate is low (θ = 0.1), only the upper stable equilibrium S3
* exists. (C) When

the predator attack rate is high (θ = 10), only the lower stable equilibrium S3
* exists.
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sizes of h ∏ 2. Figure 27.4B and D show an interesting change in system dynamics when a continuous
gradient is applied to space. Figure 27.4B shows the upper equilibrium with the default parameters. The
distribution of sizes across space is random. In reality, seastars have more time to forage in areas that
are submerged for longer periods during the tidal cycle. A simple representation of this is to assume a
constant gradient of decreasing predator foraging rate starting in deep water and moving to the high tide
mark. When a vertical gradient in the predation rate (θ = 2–0) is applied to space, instead of a continuous
change in the mussel sizes and density across space, we find a sharp transition from high density/large
size to low density/small size. Given that, for our system, we believe that there are potentially both
neighborhood effects from size protection and gradients in the predation rates, these results make it clear
that neither the ODE nor SBD representations of our system alone will suffice for our modeling effort.

An implicit assumption of the CA model is that only one “individual” can occupy a single cell,
regardless of the size of the individual. Figure 27.5 demonstrates the effect on the size distribution of
individuals when this assumption of fine-grained spatial quantization, implicit in the CA model, is
relaxed. Figure 27.5A shows a spatial plot of the ABM model at the upper equilibrium, configured to
match the spatial assumptions of our CA model as described earlier in this chapter. Figure 27.5C is the
size distribution of the spatial plot in Figure 27.5A. Figure 27.5B and D show the same results for the
default continuous spatial configuration of the ABM model. There is a strong shift in the distribution of
sizes between the two configurations. This is caused by a combination of continuous space and the
requirement that individuals not overlap. Individuals can recruit into spaces that would be reserved for
a single individual in a grid-based model. As the smaller individuals grow, they contact each other at a
smaller size and stop growing. Interestingly, although the size distributions are significantly different
between forms of the model, qualitatively, the dynamics between the two are similar. In particular, both
forms of model exhibit two stable equilibria at low and high prey biomass.

FIGURE 27.2 Two time series plots for each type of model. One plot starts at S(0) = 50 and the other at S(0) = 80. The
dashed line is S2

*. Time runs through t = 5000 days. All models were configured to match the implicit assumptions of the
ODE model and used the default parameters from Table 27.1.
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27.5 Discussion

It is certainly no small task to develop and analyze four different models of a single system. Why go to
all this effort? The simplest route is to apply Occam’s razor, that is, choose the simplest model. However,
there is a caveat to that, it must be the simplest model that adequately represents the system. Therefore,
for a simple model to be accepted, its results must be robust when its implicit assumptions are relaxed;
otherwise the results are simply an artifact of the model class. On the other hand, a stand-alone complex
model is very difficult both to test and to analyze. Without the support of simpler models, the results
are problematic at best. However, when different models are combined, the results may be quite robust.
There are two main lessons that we have learned from implementing a multiple-model approach. The
first is that implicit assumptions in simple models are really explicit. The second is that building different
models of the same process forces clearer understanding of the dynamics being represented.

We started with the assertion that models comprise two parts, the explicit assumptions, those that
defined by the researcher, and the implicit assumptions, those set by the model class. In reality, an
implicit assumption in a simple model class becomes an explicit assumption in a more complex model
class. For all but the most complex model (the ABM model), we were able to configure a more complex
model to match the implicit assumptions of a simpler model. Another way to look at this is that the set
of all possible dynamics of a more complex model class is a superset of the set of all possible dynamics
from a simpler model class. There has been much discussion in the ecological community on the possible
errors introduced into complex models by introducing additional parameters that must be specified. The

FIGURE 27.3 Results from the SBD model. (A) Ten realizations of the SBD with a 20 × 20 system started at S(0) = 65,
which is just above the unstable equilibrium of S2

* = 64.1 (dashed line). Three realizations go to the lower equilibrium and
seven go to the upper equilibrium. (B) The effect of initial conditions and system size on the equilibrium; 1000 simulations
were run at each of 100 initial conditions between S(0) = 60 and S(0) = 70 and the proportion that went to the upper
equilibrium was computed. This experiment was repeated for three system sizes: (a)10 × 10, (b)20 × 20, and (c)30 × 30.
The vertical dashed line locates the unstable equilibrium S2

*. (C) A time series of predator density for a 20 × 20 system
started at the lower equilibrium. (D) The frequency distribution of predator density for a 20 × 20 system started at the lower
equilibrium and run for 5000 time units.
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argued solution has been to use a simpler model or model class. However, as was demonstrated above,
the simpler model still contains an implicit representation of that parameter. Instead of at least an educated
guess, the value is dictated solely by the assumptions implicit in that model class. It is reasonable to
assume that setting a parameter implicitly may actually add greater error to a result that using an explicit
but imperfect measurement of that parameter in a more complex model.

Perhaps the best reason for using multiple model classes to explore a system is that it forces researchers
to understand the dynamics that they are attempting to simulate far better than if only a single model
class were used. For example, imagine a model that includes logistic growth. Its representation in an
ODE model is straightforward. Now imagine the same logistic growth function represented in an ABM.
From the view of the individual what causes the suppression? Population number? If so, is it caused by
the local or global population? Perhaps the phenomenon is triggered by lack of a resource such as food.
Where in the life cycle does the density dependence occur? Mating could decrease, pregnancies could
not come to term, or it could manifest in an increased death rate in a juvenile age class. These different
possibilities can potentially have different effects on the dynamics of the population.

Within our research, comparing the continuous space ABM to the CA model forced detailed questions
about how the individuals interact with one another and with space and led to the idea of implicit
competition. Grid-based models by definition have a minimum scale for model interactions, the size of
a single cell. An interesting consequence of this assumption occurs when using models where individuals

FIGURE 27.4 (Color figure follows p. xxx.) Two possible spatial effects are observed in the CA model when the mean
field assumptions are relaxed. Each plot shows the size distribution of mussels over space, where mussel sizes are color-
coded from blue for the smallest through red for the largest. The size distributions over space are shown for the mean field
approximation (h = ˚) at (A) the lower and (B) the upper equilibria. (C) When the neighborhood size is small (h = 1) and
the seastar attack rate is reduced (θ = 0.8), “islands” of larger individuals develop at the lower equilibrium. (D) When a
smooth linear gradient in the seastar attack rate is imposed from θ = 0 at the upper boundary of the lattice to θ = 2 at the
lower boundary, and neighborhood effect is small (h = 1), the result is a sharp transition in prey cover similar to what is
seen in many natural mussel beds. This predation gradient is what might be expected from differences in foraging times
over the tidal height gradient.
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have size as one of their attributes and only one individual is allowed per cell. When an individual
colonizes a cell it preempts the entire area of the cell, even if it physically occupies only a very small
portion of that area. This built-in spatial competition only became obvious to us when we were comparing
the CA model to the ABM model.

As our research on the seastar/mussel dynamics has progressed, each of our four models has found
its own niche. The ODE and SBD models will continue to be used as the deterministic and stochastic
baselines for the rest of the model work. In particular we will be exploring different functional forms
for phenomena such as size-dependent predation and neighborhood effects.

The CA model will be used to explore further the hypothesis that the abrupt lower boundary of mussel
beds is a manifestation of two stable equilibria over smooth environmental gradients. The multiple
equilibria hypothesis has already proved robust against demographic stochasticity (SBD), neighborhood
effects (CA), and continuous space (ABM). Within the intertidal environment, we find fine-grained
spatial heterogeneity such as boulders, underlying continuous gradients such as tidal height and wave
exposure. One question that will be explored with the CA model is at what spatial scale will this spatial
heterogeneity have an effect on the dynamics.

There are many assumptions within the ABM configuration. They occur either because this initial
version of the ABM model is designed to match the simpler models or because it is necessary to have
some starting point in any modeling project. Perhaps two of the most obvious assumptions are the
emigration and immigration of the predators and the spatial competition among the prey. In the natural

FIGURE 27.5 Results from the IBM model demonstrate the effects of using continuous space and allowing competition
for space among mussels. The system size was 20 × 20 and the default parameters of Table 27.1 were used. The diameters
of the filled circles are proportional to the sizes of the mussels. (A) The spatial distribution of mussels at the upper equilibrium
for the mean field approximation when each prey is confined to a grid point. (B) The spatial distribution of mussels at the
upper equilibrium for the mean field approximation when space is continuous and mussels grow until they touch another
individual. The ODE prediction of a lower and upper stable equilibrium also holds when the assumption of grid-based
space is relaxed. The histograms in (C) and (D) show the size distribution of mussels for the plots in (A) and (B).
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system, predators enter and leave the system across a boundary. This implies two things. First, the
immigration rate is dependent on the system perimeter as opposed to its area. Second, only individuals
close to a boundary can choose to emigrate. A later phase of this research will explore the effect of
these assumptions.

The spatial competition in currently used in this model is very restrictive. However, it was deemed
the best starting point for the modeling task. There are other possibilities for modeling spatial competition
among prey. Our current implementation permits only a monolayer of mussels. The other extreme is to
allow complete overlap of the mussels. We have already developed a version of the ABM that has this
assumption. However, it is clear that there is spatial competition within mussel beds. This and the fact
that the other three models all use the no overlap assumption (the K value in the ODE and SBD models
and the fixed number of cells in the CA model) argue against this configuration. A third possibility is
to use layered space with a three-dimensional spatial model. This is a nontrivial task and will be attempted
in a later stage of the research.

In this chapter we introduced the concept of applying multiple model classes to the analysis of a
single system. The argument for this approach is that each model class brings with it both strengths and
liabilities. Complex models are better suited for exploring interactions in space and time. However, they
are hard to verify and analyze and tend to be slow. Simple models are easier to analyze and faster than
their more complex counterparts, but they often require use of implicit assumptions that can significantly
alter the resulting system dynamics. Comparing and contrasting the results of different model classes
configured to simulate the same system can allow the researcher to tailor each model class to specific
tasks that are optimized for that class. Although the multiple-model approach takes a greater investment
in time over the short term, it provides more complete and robust results over the long term.
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