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Associations between heterozygosity at one or more electrophoretically detected enzyme loci and growth rate have been 
reported for several species of plants and animals, including several commercially important species of finfish and shellfish. 
'The general pattern is for heterozygotes to grow faster than homozygotes, although there is some variation in growth response 
even within a species. Regardless of the physiological or biochemical basis of genotype-dependent growth, polymorphism at 
a locus affecting growth rate in an overdominant manner may be lost if larger individuals have a greater mortality rate than 
smaller ones. In an exploited population, mortality of this sort is likely to result from size-selective fishing pressure. Using 
a continuous-time single-locus model of natural selection, we have related the maintenance of polymorphism at a locus to two 
measures of fishing effort: P, the legal minimum size below which there is no mortality, and J; anjinstantaneous mortality rate 
owing to fishing (above the legal minimum size). We considered two different models of fishing mortality. In model 1, fishing 
mortality above the legal minimum size is constant; in model 2, fishing mortality is a linear function of size (above P). 
Numerical analysis of model 1 indicates that maintenance of polymorphism requires either a low rate of fishing mortality or 
a value of p that is close to zero or close to the maximum attainable size. Analysis of model 2 gives similar results, suggesting 
that the conclusions are not dependent on the exact form of the mortality function. 
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DESHARNAIS, R. A., D. W. FOLTZ et E. Z o u ~ o s .  1985. Maintenance of genetic polymorphism under conditions of genotype- 
dependent growth and size-selective mortality. Can. J .  Genet. Cytol. 27: 279-288. 

Des correlations entre l'heterozygosite sur un ou plusieurs locus (loci) d'enzyme detecte par klectrophorese et la vitesse de 
croissance ont ete rapportees chez plusieurs especes de plantes et d'animaux, y inclus plusieurs especes de poissons a nageoires 
et de poissons a carapace d'importance commerciale. La tendance generale est que les heterozygotes croissent plus rapidement 
que les homozygotes bien qu'on trouve une certaine variation de croissance meme I'interieur d'une es@ce. Si on fait 
abstraction de la base physiologique ou biochimique de la croissance liee au genotype, le polymorphisme sur un locus affectant 
la vitesse de croissance d'une f a~on  surdominante, peut disparaitre si les individus plus gros ont un taux de mortalite plus eleve 
que les plut petits. Chez une population exploitte, ce type de mortalite peut survenir de pressions de @ches selectives quant 
a la taille. A l'aide d'un modele en temps continu et a locus unique de selection naturelle, nous avons etabli un lien entre le 
maintien du polymorphisme sur un locus et deux mesures likes a la @che: P, la taille minimum legale en d e ~ a  de laquelle il 
n'y a pas de mortalite, et J; un taux de mortalitt instantante dQ a la Nche (au dela de la taille minimum legale). Nous avons 
6tudiC deux modeles differents de mortalit6 dQe a la Nche. Dans le modele 1,  la mortalite die a la Nche de specimens au deIa 
de la taille minimum legale est constante; dans le modele 2, la mortalit6 dQe a la Nche est une fonction lineaire de la tailIe 
(au dela de P). L'analyse numerique du modele 1 indique que le maintien du polymorphisme requiert ou bien un faible taux 
de mortalit6 dQe a la @the, ou bien une valeur de P qui est proche de zero ou pres de la taille maximum possible. L'analyse 
du modele 2 donne des rksultats semblables, ce qui suggere que les conclusions ne dependent pas de la forme exacte de la 
fonction mortalite. 

Mots cle's: hCtCrozygositC, croissance, taille, mortalite. 
[Traduit par le journal] 

Introduction for future selection, either natural or artificial (Franklin 

~h~ importance of maintaining genetic variation in 1980). Second, to the extent that heterozygosity is re- 

populations of commercially important organisms can lated to such traits as growth, fecundity, and survival, 

be approached from two viewpoints. First, preservation maintenance of genetic variation is necessary to avoid 

of genetic variation is necessary to provide a substrate decreasing the mean fitness Of the population 
1980; Smith and Chesser 198 1 ). Previous research on 

'present address: Department of Population, Rockefeller the genetic consequences Of wilblife management tech- 
University. 1230 York Ave., New York, NY, U.S.A. 1002 1. niques has the loss Of heteroz~gosi t~ 

'Present address: Department of Zoology and Physiology, through random drift in populations whose sizes are 
Louisiana State University, Baton Rouge, LA, U. S. A. reduced by habitat destruction (Franklin 1980) or 
70803- 1725. hunting (Ryman et al. 1981). 
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Here, we demonstrate that under certain management 
regimes polymorphism at a locus may be lost even in 
populations of effectively infinite size if two conditions 
are met. First, mortality is size selective as a result of 
hunting or fishing (in particular, larger individuals must 
have a greater mortality rate than smaller ones). 
Second, growth rate is genotype dependent so that 
heterozygous individuals grow faster than homozygous 
ones. There is an extensive literature on size-selective 
mortality in populations of commercially important 
species of finfish and shellfish (Ricker 1969), which 
suggests that the first condition is often imposed on the 
population. In exploited populations, in particular, 
size-selective mortality can result from harvesting tech- 
niques that involve netting or dredging. In such cases, 
the probability of being caught is proportional to size. 
Data relevant to the second condition, genotype- 
dependent growth, have accumulated rapidly in the last 
5 years. In several species, heterozygotes appear to 
grow faster than homozygotes, although there is consid- 
erable variation in growth response in relation to hetero- 
zygosity even among populations within species (e.g., 
Ledig et al. 1983; Garton and Stickle 1984; Reinitz 
1977; Pierce and Mitton 1982). At least 16 species have 
been reported to show genotype-dependent growth rate: 
the list includes plants (Liatris cylindracea , Schaal and 
Levin 1976; Pinus rigida, Ledig et al. 1983; Populus 
tremuloides, Mitton et al. 1981), a polychaete worm 
(Hyalinoceia tubicola, Manwell and Baker 1982), bi- 
valve molluscs (Macoma balthica, Green et al. 1983; 
Mytilus californianus, Levinton and Fundiller 1975), 
gastropod molluscs (Haliotis discus, Fujino 1978; 
Thais haemastoma, Garton 1 983 ; T. lamellosa , Garton 
and Stickle 1984), fish (Gambusia afSinis, Smith and 
Chesser 198 1 ; Salmo gairdneri, Reinitz 1977; Pagrus 
major, Taniguchi et al. 1981), other vertebrates (Amby- 
stoma tigrinum, Pierce and Mitton 1982; Ovis aries, 
Baker and Manwell 1977), and humans (Bottini et al. 
1 979). 

These studies are characterized by a variety of ex- 
perimental designs, so the results are not readily com- 
parable. However, the overall pattern is consistent with 
the suggestion that heterozygosity is associated with 
increased rates of growth, although the explanation for 
this phenomenon need not be the same in all cases. 

The species that has been studied most extensively in 
this regard is the American oyster, Crassostrea virgi- 
nica (Singh and Zouros 1978, 198 1 ; Zouros et al. 1980; 
Singh 1982). In this species, heterozygotes for five of 
seven polymorphic enzyme loci were significantly 
heavier at 1 year of age than were homozygotes. Multi- 
locus heterozygosity explained about 4% of the total 
variance in body weight (Foltz et al. 1983). Koehn and 
Shumway (1982) have provided a physin!ogical expla- 
nation for genotype-dependent growth rates in the 

American oyster in terms of differential oxygen con- 
sumption (heterozygotes have lower oxygen consump- 
tion weight than do homozygotes). Stanley et al. (1 98 1) 
looked at the effect on growth in the American oyster of 
polyploidy induced by blocking meiosis with cyto- 
chalasin B. At 2 years of age, polyploids formed by 
blocking meiosis I were significantly heavier than poly- 
ploids formed by blocking meiosis I1 and also heavier 
than the diploid (control) oysters (Hidu et al. 1982). 
These results suggest that overall heterozygosity, rather 
than polyploidy per se, is the important factor affecting 
growth rate and provide independent confirmation of 
the work of Zouros et al. (1 980). Additional support for 
the idea that heterozygous oysters grow faster than 
more homozygous ones is provided by the breeding 
experiments of Newkirk et al. (1977) and the inter- 
population crosses of Mallet and Haley (1983). 

Basic theory 
The theory of selection in age-structured populations 

is described by Charlesworth (1980). The notation used 
in developing the model is explained in Table 1. Let 
nij(x, t) be the number of individuals of genotype i j  
( i j  = 11, 12,22) of age x at time t. The demographic 
dymanics of the population can be described by a sys- 
tem of three partial differential equations: 

where pij(x) is the age-dependent mortality rate. Equa- 
tion l describes the ageing and death of individuals. 
Reproduction is described using a boundary condition 
for x = 0: 

where n(0, t) = nll(O, t) + n12(0, t) + n2,(0, t), 
mij(x, t) is the expected number of offspring for geno- 
type i j  at age x and time t ,  and x, is the age at which 
reproduction begins. Charlesworth (1980, p. 126) lists 
some of the assumptions of this formulation. 

Let p(t)  be the frequency of A I alleles among newly 
formed zygotes. It can be computed using 

With random union of gametes 
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DESHARNAIS ET AL. 28 1 

TABLE 1. Explanations of symbols used in the text 

B i j  Maximum size of an individual of genotype ij n , , ( x ,  t )  Number of individuals of genotype ij at age x  and 

I3 Legal minimum size time t  
c ( t )  Recruitment rate per unit size per individual at n z  ( x )  Equilibrium number of individuals of genotype ij 

time t  at age x  
c * Equilibrium recruitment rate per unit size per n ( x ,  t )  Number of individuals at age x  and time t ,  with- 

individual out regard to genotype 
n * ( x )  Equilibrium number of individuals of age x ,  

f d Y )  Instantaneous mortality rates owing to fishing without regard to genotype 
f2(Y) f ( y )  I a,, A measure of "aggregate size" of individuals of 
ij Genotype (ij = 1 1 , 1 2 , 2 2 )  genotype ij 
K i, Instantaneous growth rate of an individual of p ( t )  Frequency of A ,  alleles at age 0 and time t  

genotype ij P *  Equilibrium frequency of A I alleles at age 0 
l ( x )  Probability of an individual surviving to age x ,  R t  Total number of offspring produced by indivi- 

without regard to genotype - duals of genotype ij at equilibrium 
l i j (x)  Probability of an individual of genotype ij sur- R *  Average value of RE across genotypes 

viving to age x  t  Time 
lij(Y) Probability of an individual of genotype ij sur- W , , ( x )  Size of an individual of genotype ij at age x  

viving to size y  W J ( )  Age of an individual of genotype ij at size y  
m i j ( x ,  t )  Expected number of offspring for an individual x  Age 

of genotype i j  at age x  and time t  x o Age at which reproduction begins 
m t ( x )  Equilibrium expected number of offspring for an iij Age at which an individual of genotype ij attains 

individual of genotype ij at age x  legal minimum size ( 9 )  
p i j ( x )  Mortality rate of an individual of genotype ij at y  Size 

age x  Z lnstantaneous natural mortality rate 

Genotype-dependent growth new recruits balances losses owing to mortality, re- 
Let the variable y represent size. Growth will be sulting in a stable population size. Let 

based upon the following gompertz function: [7] c( t ) - (expected number of zygotes per unit size 
per individual) (probability of a zygote 
becoming a new recruit) 

where Wii(x) is the size of an individual of genotype i j  With this definition we can write 
and age x,  B, is the maximum size of an individual of x < x, 
genotype ij ,  K,, is the growth rate of an individual of [8] m,(x, t )  
genotype i j ,  and x, is the age at which size is taken to {I P,,) W;,(X) x 2 xo 

be 0, also age at which reproduction begins. The in- for the expected number of offspring. This assumption 
verse of the growth function gives an individual's age is valid for situations in which reproduction depends on 
based on its size: body size or gonad size rather than age. 

It should be noted that [5] and [6] are based on the 
assumption that, prior to.age x, , all genotypes are iden- 
tical in size. 

Size-specific recruitment 
Assume that the expected number of offspring for an 

individual is proportional to its size, irrespective of 
genotype. Furthermore, assume that the probability that 
a zygote survives long enough to be counted as a recruit 
of age x, is equal to the proportion of i9dividuals lost 
owing to mortality. In other words, the total number of 

Size-specific survivorship 
First, consider the age-specific mortality rate pi,(x). 

We will assume that there are two sources of mortality: 
(i) a natural mortality rate Z which is independent of 
size and age, and (ii) a fishing mortality rate f(y) which 
may depend on size. We will also assume that there 
exists a legal minimum size P below which there is no 
fishing mortality. To simplify the analysis in terms of 
age, define 

where 2,, is the age at which individuals of genotype i j  
attain legal minimum size. Now we can write the mor- 
tality rate as a function of age: 
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To obtain an explicit model, it is necessary to choose an explicit form for the function f(y). We will consider two 
simple forms for the function f(y), which will be referred to as model 1 and model 2. In model 1, we assume that 
fishing mortality above the legal size is a constant. One can imagine this situation as being analogous to an 
idealized situation of net fishing where all individuals below legal size ("mesh size of the net") escape. The fishing 
mortality rate is analogous to the instantaneous probability of being netted. For model 2, we assume size-dependent 
mortality, specifically, that the instantaneous probability of being captured is proportional to size for individuals 
above the legal minimum. The fishing mortality rates are 

for model 1 
= f2y for model 2 

where f and fi are constants. Note that f has units (time)-' and f 2  has units (size time)-'. 
Now, we will describe the survivorship curves for each model. Survivorship is related to mortality rate by the 

expression 

Substituting [lo] into [12] gives 

= exp(- [' ~ d c )  o S x < i j ,  

for the genotype-specific survivorship function. Substituting [I I ]  into [13] gives an explicit solution to the 
survivorship function for each model. 

Model 1: 

[I41 4,(x){ 
= exp( -Zx) 0 5 x < i, 
= exp( -Zx) exp( - f ,  (X - i ,,)) x L i ;, 

Model 2: 

[I51 h,(x){ 
= exp(-Zx) 0 5 x 5 iij 
= exp( -Zx) exp( -f2Bij(x - i,, + ~ i ' ~ - K i j ( x - x o )  - K ~ ' ~ - ~ I J ( ~ I J  ' 0 )  )) X 2 i;, 

Finally, it is possible to use [5] to express survivorship as a function of size for each model 

Model 1: 

Model 2: 

= e-Zxo(l - ( y / ~ , ) ) K ~ l z  
[I71 l;,(y){ 

0 5 y < p  
= e-Z'( 1 - ( y / ~ o ) ) K ~ l z ( ( ~ ,  - y)  /(B, - P ) ) K ~ ' J ? ~ ~ J  eJ?Ki '0  - P )  P 5 Y 5 B;, 

Note that in both models, survivorship is a function of 
size and genotype. 

Equilibrium Substituting ani,/at = 0 into [I] and solving for the 
At genetic and demographic equilibrium, the geno- equilibrium age distribution, n?(x), of each genotype 

type numbers, njj(x, t), remain constant over time. yields 
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DESHARNAIS ET AL 

As one might expect, the age distribution is propor- 
tional to the survivorship curve when population size 
remains constant. Let m;(x) be the age- and genotype- 
specific expected number of offspring at equilibrium. 
Equations 2, 3, and 4 become 

and 

[21] n: (0)  = p * ' n * ( ~ )  

nr2(0) = 2p*(l  - p*)n*(O) 

Now, consider the total number of offspring produced 
by each genotype at equilibrium. This quantity is de- 
fined as 

Substituting [21] into [l8] and [18] into [20] gives 

The system of two equations in [23] reduces to 

These two equations hold true for all 0 < p* < 1 if 
R = R T2 = R,*, = 1. If the numbers of offspring from 
all three genotypes are not equal, then R; + 1 and the 
solution to [24] is 

Recall from [8] that m,,(x, t) = c(t)Wi,(x). Because 
m;(x) is constant through time, c(t)  = c* where c* is 
a constant. Therefore, we can write 

where 

a,, = Jrn W,,(x)l,,(x)h 
rc l  

Substituting [26] into [25] and cross multiplying gives 

Solving [27] for c*, one gets 

Substituting [26] into [25], one can also write 

Using [28] in [29] and simplifying, one has 

which is equivalent to the result obtained using the 
classical discrete generation formulation (Roughgarden 
1979; Charlesworth 1980). Finally, consider the aver- 
age value for the expected number of offspring per 
individual, which will be denoted by R*. It is calcu- 
lated using 

Substituting [26], [28], and [30] into [31], it is easy to 
show that R* = 1. This result gives an alternative to 
[28] which is 

Assumptions 
Before we apply the theory developed in the pre- 

ceeding section to the problem of how fishing pressure 
as measured by legal minimum size may affect main- 
tenance of genetic polymorphism, it is proper that we 
state explicitly the assumptions on which the theory is 
based. Some of the assumptions (single locus with two 
alleles, large population size, etc.) are common in 
population genetics theory. Here, we discuss those as- 
sumptions which are likely to be controversial or pro- 
blematical. 

Random mating 
Gametes are assumed to combine at random with 

respect to the age, size, and genotype of the parent. In 
species where the males shed their gametes into the 
water column, this assumption may be a good ap- 
proximation. In species which mate assortatively on the 
basis of size or age, genotypic frequencies among the 
zygotes may differ significantly from the Hardy- 
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Weinberg expectations (e.g., Zouros and Foltz 1984). 
In this instance, size-selective fishing mortality has the 
potential for disrupting mating patterns, with popu- 
lation genetic consequences that can only be answered 
with a more complex model. 

Reproduction proportional to size 
This assumption is critical to our models, since it is 

the larger size of the heterozygotes that allows them to 
produce more offspring. If no relationship exists be- 
tween size and fertility for individuals of the same age, 
then our model is inappropriate. There is some evidence 
for bivalve molluscs (Bayne et al. 1983; Shafee and 
Lucas 1980; Thompson 1979) that fecundity is a linear 
or nearly linear function of body size, although age was 
not considered as a covariate in these analyses. 

Same age at first reproduction 
The parameter x ,  in our models represents the age at 

which reproduction begins. It is assumed to be the same 
value for all three genotypes. Parameter x ,  also marks 
the age at which we begin measuring growth. There- 
fore, prior to age x, ,  we assume that all genotypes of 
the same age are identical in size. For a species with a 
planktonic larval stage, x ,  might correspond to the age 
at metamorphosis. If some genotypes begin repro- 
duction at an earlier age, but the differences among 
genotypes are small relative to the duration of the repro- 
ductive period, then this assumption may be a con- 
venient simplification. 

Constant natural mortality rate 
In the absence of fishing, we have assumed that the 

instantaneous probability of dying is independent of 
size and age. If mortality rate is a function of age (e.g., 
senescence), this should not have an important quali- 
tative effect on our models, since all genotypes age at 
the same rate. However, if natural mortality is a func- 
tion of size (e.g., smaller individuals are more vul- 
nerable to predators), then the different genotypes will 
have different survivorship curves owing to differential 
rates of growth. In either case, one might expect size- 
dependent fishing mortality to reduce the likelihood of 
a polymorphism maintained by genotype-dependent 
growth. We assume that violations of this assumption 
will have a negligible effect on the genetic equilibrium 
of the population, compared to the effect of fishing 
mortality. 

Legal minimum size 
We have assumed no fishing mortality below the 

legal minimum size. More realistically, one might ex- 
pect some fishing-induced mortality to individuals 
below the legal minimum. In this respect, model 2 is 
likely to be a better representation than model 1, be- 
cause in model 2 the mortality rate owing to fishing 
increases with the size of the individual. Any fishing- 

induced mortality which affects individuals below the 
legal minimum size would be qualitatively similar to 
reducing the legal minimum size. 

Constant population density 
Our analysis has been focused upon equilibrium con- 

ditions. In particular, we have ignored completely the 
potential effects of fishing on changes in population 
density. In our models we have assumed that recruit- 
ment always balances mortality, resulting in a stable 
equilibrium population size. This was accomplished by 
making the constant which relates reproduction to size 
a function of time [7]. Therefore, our models assume 
that reproduction will always be sufficient to offset 
losses owing to mortality. While this might be true for 
low to moderate rates of fishing, this assumption might 
be questioned when populations are being heavily ex- 
ploited. One should remember that our models were 
designed to address genetic questions and not such 
topics as extinction of the population or maximum sus- 
tainable yield. Also, our models provide no information 
on the rate of approach to genetic equilibrium. 

Overdominance for growth rate 
Throughout this paper, we have assumed that hetero- 

zygotes have an advantage in growth rate over homozy- 
gotes. This assumption seems reasonable considering 
the increasing evidence for overdominance in growth 
rate in a variety of species. This evidence is based on 
allozyme variation. Although many authors support the 
view that the allozymes are themselves the agents of 
overdominance, associative overdominance (linkage of 
the various allozymes with different detrimental muta- 
tions) can not be excluded. Favro et al. (1979, 1980) 
have studied the effects of size-selective fishing when 
heterozygotes are intermediate in growth rate between 
the two homozygotes (codominance) . 

No life history diflerences between the sexes 
Implicit in our models is the assumption that males 

and females do not experience different growth rates or 
different age- or size-dependent mortalities. In other 
words, our model assumes a constant sex ratio at all 
ages and sizes. In simultaneous hermaphrodites (e . g . , 
some Pecten species), this assumption is probably val- 
id. For protandrous hermaphrodites, this assumption is 
less satisfactory. Buroker (1983) has reviewed the evi- 
dence concerning size-dependent changes in sex ratio in 
oysters (Crassostrea gigas). Given the strong influence 
of the environment on sex ratios in oysters, it may be 
difficult to include sex differences in our models with- 
out greatly increasing their complexity. 

Effect of fishing pressure on genetic variation 
We can now address the question of how fishing 

pressure as measured by fishing mortality, f(y), and 
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legal minimum size, P , affect the maintenance of gene- 
tic polymorphism. To answer this question, we will ( i )  
compute ili, from [26] for each genotype, (ii) compute 
p* from [30] using the R,'s, and (iii) determine values 
of fishing pressure (parameters f ,  or f2 ,  and p )  that 
allow a stable polymorphism. 

Solutions to LRij  (model 1) 

Substituting [ 141 gives 

Substituting [5] and solving gives 

[33] a, = e - Z x o ~ , ( ~ - l  - (K, + 2)-I 

- (Z-I - (fl + z)-l)(  i - (P/B;,))K;'Z 

+ ((Ki, + 2)-' - (fl + K;, + 2)-I) 

X (1 - ( P / B , , ) ) ~ " ~ + ' )  

The following special cases are worth noting: Iff, = 0 
or p 2 B ,,, then 

[34] a, = e - Z x o ~ i , ( ~ - '  - (K, + z)-l) 
If p = 0, then 

[35] a, = e-zxoBj,((f, + 2)-' - (f, + K, + 2)-I) 

For these two cases, if K, = K I 2  = K22, then 

Stable polymorphism is only possible if B , ,  < B12 > 
B22. If B = B 12 = B22, then [34] gives 

and [35] gives 

For [37] and [38], a stable polymorphism is only possible if K I I  < K12 > K22. Thus, in the absence of fishing 
[34] or in the absence of a legal minimum size [35], polymorphism requires that the heterozygote be larger in size 
than either homozygote for any given age. 

Solutions to L R i j  (model 2) 
This model is more complex. An explicit solution for ili, can be obtained by substituting u = B,e-K~~(x-xo) and 

- ~ , ' u - ' d u  = dx into the integral a,, = ~, , (x) l , , (x)dx.  The solution is 

" ( - l ) h ( f 2 ~ , ; ' ) h ( ~ ; ,  - P)*(P + B;,(K~I(Z + f2B,,) + h)-I) 
where an infinite series = 2 

h = o  ~ ! ( K , ' ( z  + f2B,,) + h + 1 )  

This infinite series will always converge. Here again, 
when f 2  = 0 or p = B,,, one obtains [34]. 

Numerical results (model 1) 
To evaluate the effect of fishing pressure on the 

maintenance of genetic polymorphism, we chose spe- 
cific numerical values for all parameters except f ,  and 
p.  For these numerical values, we searched for values 
off , and p that represented the "dividing line" between 
stable polymorphism and fixation of one of the alleles. 
This occurs when LR 12 = min (LR I , LR22). Because ab- 
solute size is arbitrary, we set the maximum size of 
heterozygotes, B I2 ,  at 1.0. Heterozygotes were as- 

signed a 5% advantage in both maximum size and rate 
of growth (KI2) .  Research on oysters (Zouros et al. 
1980; Singh 1982) has consistently observed an average 
growth advantage for heterozygotes of 5 - 7%. The ab- 
solute magnitudes of K I 2  and f are less important than 
their magnitudes relative to Z. For example, doubling 
both KI2  and Z will give, for each P , a critical value of 
f l  that is twice its original value. Therefore, in 
presenting our results we have given the ratios KI2 /Z  
and f l  /Z  rather than the actual values of K 12, f , and Z 
that were used in the computations. A large ratio of 
K12/Z represents a situation in which the growth rate 
exceeds the mortality rate and most individuals grow to 
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No Stoble Rlymorphism 

0 . 4  

0 . 2 1  Stobla Polymorphism 

P / B l 2 " 7  0 .6  (, No Stobk Polymorphism 

0.2 0 . ~ 1  Stobk Polymorphism 1 

No Stobla Potymorphlrm 

FIG. 1 .  Critical values of legal minimum size ( P / B 1 2 )  
under model 1 separating stable polymorphism from fixation 
as a function of fishing mortality (f /Z) for (A) K 12 /Z  = 5.0, 
(B) K 12 /Z  = 1 .O, and (C) K 12 /Z  = 0.5. See text for details 
of the model. 

a large size before dying. In contrast, a low K 12 /Z  ratio 
represents a situation in which the natural mortality rate 
is large and few individuals grow to a large size. The 
KI2 /Z  values of 0.5, 1.0, and 5.0 can be thought of as 
representing environmental conditions which are harsh, 
moderate, and benign, respectively. The ratio f, /Z  is a 
dimensionless quantity which represents the rate of 
fishing mortality relative to the natural mortality rate. In 
a similar fashion, we have expressed the legal minimum 
size as the ratio P /B 12 ,  because the absolute size of the 
animals is arbitrary. The following table summarizes 
this information: 

Parameter Value(s) 

No Stobla Rlymorphism 

0 6  

0 2  1 Stobla Polymorphism 

No Stobk Potymorphirm 7 

0 . 0 -  
P / ~ r r  

0.6-  

0 .4  

0 . 2  

FIG. 2. Critical values of legal minimum size ( P / B  12 )  
under model 2 separating stable polymorphism from fixation 
as a function of fishing mortality (f2B 12/Z)  for (A) K 12 /Z  = 
5.0, (B) K 1 2 / Z  = 1.0, and (C) K, , /Z  = 0.5. 

No Stobk Polymorphism 

- < 
- Stobk Polymorphism 

value of the ratio KI2 /Z .  In harsh environments (Fig. 
lC), fishing mortality must be large to have an impact 
on the genetic composition of the population, even 
when this mortality is scaled to the natural mortality 
rate. In this case, the polymorphism is most vulnerable 
to fishing mortality at intermediate values of P / B 12 .  A 
similar situation obtains for moderate environments 
(Fig. 1 B). In benign environments (Fig. 1 A), there is a 
monotonic relationship between the critical values of P 
and f , for values of P/B 1 2  less than 0.95. For large 
values of p / B 1 2 ,  a small amount of fishing pressure can 
result in decreased polymorphism. This is because the 
faster-growing heterozygotes reach the legal minimum 
size more quickly than slower-growing homozygotes. 
Formally, this is a case of underdominance, which is 
known not to result in stable polymorphism, but in 
fixation of one or the other allele depending on the 
initial perturbation from equilibrium. The difference in 
the ages at legal size, max( i l l  ,iz2) - i 1 2 ,  grows 
larger as P gets closer to the maximum size B 12.  In the 
extreme case where B I Z  > P > B I I  = B2?, only he- 
terozygotes are subject to fishing mortality because 
homozygotes never reach the legal minimum size. Con- 

The results of the analysis appear in Fig. 1. There is a versely,;~ P goes to zero, all genotypes reach legal size 
family of curves, each curve representing a different at approximately the same age, and, therefore, the dif- 
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ferential effects of fishing mortality on e>notypes are Population-genetic study of the effects of selective fishing 
small. ~ h ~ ~ ,  in  benign environments genetic polymor- on the growth rate of trout. J. Fish. Res. Board Can. 36: 

phism can be maintained in the population even when 552-561. 

mortality due to fishing is high, provided the legal mini- 1980. Effects of unconventional size limits on the 
growth rate of trout. Can. J. Fish. Aquat. Sci. 37: mum size is low enough. We repeated the analysis for 873-876. 

growth rates l% advantage for heteroz~- FOLTZ, D. W., G. F. NEWKIRK, and E. ZOUROS. 1983. Gene- 
gotes and obtained similar results. The results are also tics of growth rate in the American ovster: absence of 
similar when growth rates are set equal across geno- 
types and only maximum size varies between homo- 
zygotes and heterozygotes, and vice versa. 

Numerical results (model 2 )  
For model 2, heterozygotes were again assigned a 

5% advantage in growth rate and maximum size. As 
before, we have expressed K I 2  relative to 2 .  The major 
difference in model 2 is that the instantaneous mortality 
rate, f 2 ,  gives the amount of fishing mortality per unit 
size. In presenting the numerical results, we have taken 
this size dependence into account by multiplying f 2  by 
B I Z  before dividing by 2 .  As before, the result is a 
dimensionless quantity which represents the rate of 
fishing mortality relative to the natural mortality rate. 
The parameter values used are the same as in model 1. 
The results of the analysis are given in Fig. 2. As 
before, we have presented a family of curves repre- 
senting three values of K 12 /Z .  Qualitatively, the results 
are very similar to model 1, which suggests that our 
conclusions are fairly robust. 
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