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A stochastic differential equation model for the rate of change of adult numbers was used to analyze data from two genetically 
differentiated groups of laboratory populations of the flour beetle, Tribolium cSastctneum. The first group of populations was 
homozygous for the corn oil sensitive allele and the other group was polymorphic at this genetic locus. Previous work has 
shown that mean larval viability is increased in the polymorphic populations. This suggests that the average number of potential 
recruits was higher in the polymorphic populations when compared to the homozygous ones. 'The stochastic model was used 
to derive predictions for the stationary distributions and the serial correlations at demographic equilibrium. These predictions 
were evaluated using 66 weeks of census data from both groups of populations while adult numbers were fluctuating in the 
region of their steady states. The data supported the following theoretical predictions: ( 1 )  the fluctuations in adult numbers can 
be described using a gamma probability density function; (i i)  increased recruitment in the polymorphic populations results in 
a larger mean and variance for adult numbers; (iii) the autocorrelation of adult numbers decays exponentially with time; and 
(iv)  increased recruitment in the polymorphic populations results in a faster rate of decay in the autocorrelations. These results 
suggest that genetically based fitness differences among populations can be reflected in the stationary stochastic dynamics of 
population size. 
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Un modkle sous forme d'equation differentielle stochastique du taux de changement du nombre d'adultes a ete utilise pour 
analyser des donnees sur deux groupes genetiquement differenties de populations de laboratoire de tribolium rouge de la farine, 
Tribolium castaneum. Le premier groupe de populations etait homozygote pour I'allele sensible a I'huile de mai's et I'autre 
groupe etait polymorphique a ce locus genetique. Des travaux anterieurs ont demontre que la viabilite moyenne des lames est 
accrue dans les populations polymorphiques. Ceci suggkre que le nombre moyen de recrues potentielles a ete plus eleve chez 
les populations polymorphiques en comparaison des populations homozygotes. On a utilise le modkle stochastique pour emettre 
des predictions sur les distributions stationnaires et les correlations des series du nombre d'adultes au stade de l'equilibre 
demographique. Ces predictions ont ete evaluees en utilisant les donnees de recensement de 66 semaines des deux groupes de 
populations au moment ou le nombre d'adultes fluctuait dans la region de leur etat stationnaire. Les donnees supportent les 
predictions theoriques suivantes: ( i )  les fluctuations du nombre d'adultes peuvent Ctre decrites au moyen d'une fonction de 
densite a probabilite gamma; ( i i )  I'augmentation du nombre de recrues chez les populations polymorphiques se traduit par une 
moyenne et une variance plus grandes du nombre d'adultes; (i i i)  I'autocorrClation du nombre d'adultes diminue exponen- 
tiellement avec le temps; et ( i v )  I'augmentation du nombre de recrues chez les populations polymorphiques se traduit par un 
taux plus rapide de diminution dans les autocorrClations. Ces resultats suggkrent que les differences de vigueur a base genetique 
chez les populations peuvent se reflCter sur la dynamique stochastique stationnaire du niveau de population. 

Mots clPs: Tribolium, dynamique des populations, modkles stochastiques, distributions stationnaires, distribution gamma. 
[Traduit par le journal] 

Introduction 
One concern of population genetic research is the 

interaction between the genetic structure of a population 
and its demographic behaviour. In our earlier report 
published in this journal, Desharnais and Costantino 
(1980) showed that homozygosity for the corn oil sensi- 
tive allele in the flour beetle (Tribolium castaneum) was 
an unstable genetic equilibrium. Homozygous labora- 

tory cultures which were altered by the introduction of 
the wild-type allele converged to a polymorphic genetic 
equilibrium. Furthermore, the average number of adults 
increased in the polymorphjc cultures as compared to 
the homozygous controls. This demographic response 
to a genetic shift is in agreement with several models 
which predict that natural selection will maximize the 
equilibrium size of a population (MacArthur 1962; 
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Anderson 197 1 ; Roughgarden 197 1 , 1976; Charles- 
worth 197 1, 1980; Ginzburg 1977; Asmussen and Feld- 
man 1977; Hastings 1978; Gregorius 1979; Desharnais 
and Costantino 1983). However, adult numbers in the 
experimental cultures did not converge to a fixed equi- 
librium point. Instead, the populations were found to 
fluctuate around a mean value. 

In the present report, we extend the analysis of 
Desharnais and Costantino (1980) by considering the 
fluctuations in adult numbers at equilibrium. Our study 
incorporates an additional 48 weeks of new census data. 
We begin by applying the theory of stochastic differen- 
tial equations to an elementary model for population 
growth in Tribolium and then establish several testable 
theoretical predictions. We relate the differences in the 
stationary stochastic dynamics of the homozygous and 
polymorphic populations to differences in recruitment 
rates based upon the biology of the corn oil sensitive 
and wild-type genotypes. This report combines a theo- 
retical analysis of stochastic population dynamics with 
experimental data. 

Experimental observations 
The detailed Tribolium culture techniques together 

with the demographic and genetic analyses for the first 
80 weeks of this experiment are contained in Deshar- 
nais and Costantino ( 1980). For continuity, the general 
procedure is outlined here. Twenty-two cultures of the 
flour beetle (Tribolium castaneum) , homozygous for 
the corn oil sensitive allele (coslcos), were initiated 
with 64 adults, 16 pupae, 20 large larvae, and 70 small 
larvae. Each population was contained in a one-half 
pint milk bottle with 20 g of corn oil medium and kept 
in an unlighted incubator at 33 * 1°C and 56 -+ 11% 
relative humidity. The cultures were censused and 
placed in fresh medium every 2-3 weeks. At the end 
of the first 10 weeks, the wild-type allele was intro- 
duced into 9 of the 22 cultures. In these populations, the 
frequency of the wild-type allele converged to a poly- 
morphic equilibrium. The remaining 13 replicates were 
not genetically altered. 

It is the adult census data from weeks 62 to 128 that 
are examined in this report. Two of the 13 homozygous 
cultures and three of the nine polymorphic cultures be- 
came diseased prior to week 128 and were eliminated 
from the analysis. Thus our data set consists of 29 
consecutive censuses on 1 1 coslcos homozygous popu- 
lations (3 19 observations) and six polymorphic popula- 
tions (174 observations) obtained while adult numbers 
were fluctuating in the region of their steady states. 

Theoretical background 
Deterministic model 

A deterministic model for the dynamics of laboratory 
populations of the Tribolium flour beetle can be formu- 

lated from a consideration of the behavioural inter- 
actions which occur among the various life stages 
(eggs, larvae, pupae, and adults). In the species T. 
castaneum and T. confusum, an important interaction is 
the cannibalism of pupae by adults. If we let C be the 
per capita rate at which adults cannibalize pupae and we 
assume that adults act independently, then the propor- 
tion of pupae which survive to adulthood is exp( -CN), 
where N is the total number of adults. Coupling this 
density-dependent function with density-independent 
rates of reproduction and mortality, we have 

as a simple differential equation for the rate of change 
in adult numbers. The parameterx represents the rate at 
which potential recruits (large larvae and pupae) are 
produced per adult, and D is the per capita adult mor- 
tality rate. Although this equation is a gross oversimpli- 
fication of the true complexity inherent in Tribolium 
populations, it has served as a useful paradigm in many 
studies on Tribolium population dynamics (Crombie 
1946; Neyman et al. 1956; Lloyd 1968; Desharnais and 
Costantino 1980, 198 1, 1982a, 1982b), in fisheries bio- 
logy (Ricker 1954; Levin and Goodyear 1980; May 
1980), and in general population theoretical studies 
(Moran 1950; May 1974, 1976; Smith 1968, 1974; 
Hoppensteadt 1975; Oster 1976; May and Oster 1976; 
Thieme 1979; Hunt 1980; Fisher et al. 1979; Cull 198 1 ; 
Desharnais and Costantino 1983). Using [I] we sacri- 
fice reality for generality. 

The dynamics of the deterministic model [I] are quite 
simple. If X > D, the equilibrium number of adults 
given by N* = log(X/D)/C will be approached as- 
ymptotically for any initial condition N(0) > 0. If 
X < D, then the population will go extinct. In the 
neighborhood of N*, the rate of approach to equili- 
brium is given by the eigenvalue A = D log(D/X). 

Stochastic model 
Costantino and Desharnais (1981) have shown that 

the deterministic model [I] can be converted to a sto- 
chastic model be assuming that either the mortality rate 
D or the recruitment rate X is subject to random fluctua- 
tions. This is accomplished by introducing a "white 
noise" random variable y(t)  which has an expected 
value of zero and a constant spectral density which 
equals one. In the case of stochastic mortality we have 

[2] dNld t  = N(X exp(-CN) - (D + u y )  

as our stochastic differential equation. A similar model 
is obtained assuming recruitment is stochastic. The pa- 
rameter u is used here as a measure of the amplitude of 
the random fluctuations. Of course, a more general 
model would assume that all three parameters D ,  X, 
and C fluctuate. For the sake of brevity and mathe- 

C
an

. J
. G

en
et

. C
yt

ol
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
D

r.
 R

ob
er

t D
es

ha
rn

ai
s 

on
 0

5/
31

/1
9

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



DESHARNAIS AND COSTANTINO 343 

matical tractability, we will only consider model [2]. 
For an analysis of the case when the parameter X fluc- 
tuates, see Costantino and Desharnais (1981). 

Stationary distribution 
With the stochastic Eq. 2 it is possible to obtain an 

expected steady-state distribution for adult numbers. 
The density function f for this distribution is obtained 
through the use of the Kolmogorov equation 

where, loosely speaking, m and v are the mean and 
variance of the rate of population change, and K is a 
scaling factor which makes the integrated probability 
equal to one. Unfortunately, mathematical ambiguities 
arise in the analysis of stochastic differential equations, 
and two types of stochastic calculi are commonly used 
to calculate m. To simultaneously present our results 
for bath types of calculi, we follow the example of 
Dennis and Patil (1984) and define the following indi- 
cator variable: 

0 Stratonovich calculus 
L4] = u2/2 ito calculus 

For D stochastic, m(N) = N(X exp(-CN) -j(D + I;) 
+ (u2/2))  and v(N) = N ~ u ~ .  Substituting these into 
[3] gives 

for the expected probability distribution of adult num- 
bers. 

The density function given by [5] is rather unwieldy 
in that it involves an infinite series. Costantino and 
Desharnais (1981) derived a linear approximation for 
this series which simplifies the analysis. Using this 
approximation, [5] becomes a member of the well- 
known family of gamma distributions whose density 
function is given by 

Here T(x) is the gamma function. This density is only 
defined for N > 0. a is the shape parameter of the 
distribution and P is a scaling parameter. As a gets 
large, f(N) approaches a Gaussian normal distribution 
(Johnson and Kotz 1970). For fluctuations in D ,  a = 
2(X - D - I;)/u2 and P = ( a 2  log(X/D))/(2C(X 
- D)). As u2 gets small relative to X and D ,  a gets 
large, the importance of I; diminishes, and the predicted 
distribution becomes approximately normal. 

We examined a numerical example to see how 
closely the gamma density [6] approximates the exact 

density [5]. First we chose plausible parameter values 
such that N* = 160, X/D = 3.5, and u 2 / ~  = 0.10. 
Substituting these values into the exact density func- 
tion, we computed the integration constant K and the 
first two moments of the distribution. We then fit both 
a gamma and a normal density function with the same 
mean and variance as the exact distribution. We mea- 
sured the closeness of the fit by computing the maxi- 
mum difference between the cumulative frequencies of 
the exact distribution and both the gamma and normal 
approximations (Kolmogorov's statistic). The gamma 
density provided a close fit with a maximum difference 
of 0.013. For the normal density the maximum dif- 
ference was 0.045; the normal density could not match 
the skewness of the exact distribution. Costantino and 
Desharnais (198 1) evaluated the gamma approximation 
using a Monte Carlo simulation of [2]. 

The major advantage of working with a known distri- 
bution is that closed form expressions are available for 
its moments. For the gamma, the mean and variance of 
adult numbers are given by E(N) = aP and Var(N) = 
a p2, respectively. In terms of the biological parameters 
of our original model, we have 

[7I E(N) = N*(l - I;/(X - D)) 

[8] Var(N) = ( ( uN*)~  ( 1 - I;/(X - D))) 

+ (2(X - D)) 

where N* is the equilibrium point of the deterministic 
model [I]. With these expressions it is possible to pre- 
dict the effects of a change in one of the biological 
parameters on the steady-state distribution of adult 
numbers. 

Stationary time series 
If the amplitudes of the random fluctuations are 

small, then we can obtain a first approximation to the 
autocorrelation function of adult numbers through time 
(Nisbet and Gurney 1982). We begin by linearizing our 
stochastic differential [2] around the point N(t) = N* 
and y( t )  = 0. This gives us 

where A is the eigenvalue from the deterministic model 
[I]. (Our data analysis, presented below, will justify the 
use of this linear approximation.) Using standard 
Fourier transform techniques, we derive in Appendix 1 
the following theoretical function for the autocorrela- 
tion of N(t) with N(t + 7): 

With this expression, one can obtain information on the 
demographic stability of the population by estimating A 
from data at the steady state. 

Until now, we have assumed that the random vari- 
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FIG. 1 .  Mean 5 standard error of number of adults plotted 
against census week for the homozygous populations (@) and 
the polymorphic populations (A). 

able y(t) represents uncorrelated white noise. As an 
alternative model, we will assume that environmentally 
induced fluctuations in the parameter D are themselves 
autocorrelated. Specifically, we now assume that y(t)  
represents "pink noise," that is, the correlation of y( t )  
with y ( t  + 7) is 

A N t  FOR HOMOZYGOUS POPULATIONS 

FIG. 2, Scatter diagram of the change in mean adult num- 
bers (AN,) for the homozygous versus the polymorphic popu- 
lations. Each point represents the change over two successive 
censuses. 

where p < 0 is a measure of the rate of decay of the 
autocorrelations. With this modified definition of y( t )  
in [9], we show in Appendix 1 that the expected auto- 
correlation function of adult numbers is 

( A ~ ~ P ( c L  17 1) - F.exp(~  ( 7  ())/(A - F.) for f (1, 

[12] p ~ ( 7 )  = (1 - h171 )exp (h l~ l )  for A = p 

By comparing [lo] and [12] with actual data, one can 
evaluate the assumption that the time scale for random 
environmental fluctuations is much shorter than the 
time scale for changes in population size. 

Results 
The mean and standard error of adult numbers over 

time are plotted in Fig. 1. The polymorphic populations 
maintain a larger number of adults than the homozy- 
gous populations. Desharnais and Costantino ( 1980) 
made a similar observation for the census data prior to 
week 62. In this earlier study, assays of the survivorship 
of eggs sampled from the experimental cultures indi- 
cated an increase in the mean larval viability for the 
polymorphic populations. This finding, which is con- 
sistent with the bioligy of the cos mutant, suggests that 
the average number of potential recruits, parameter X, 
is higher in the polymorphic cultures than in the homo- 
zygous ones. An increase in the parameter X results in 
an increase in the deterministic equilibrium number of 
adults N*, an interpretation which is supported by the 
experimental data (Fig. 1). 

An examination of the fluctuations of mean adult 
numbers in Fig. 1 suggests that the homozygous and 

polymorphic populations are correlated in their beha- 
viour. That is, the increases and decreases in population 
size occur at roughly the same points in time. We in- 
vestigated this impression by computing the change in 
the mean number of adults at time t as AN, = N, 
- N,-, , pairing the values for the homozygous and 
polymorphic groups at each census, and plotting these 
data as a scatter diagram in Fig. 2. This analysis does 
indicate a significant positive correlation (r  = 0.599, 
P < 0.01 ), suggesting that all the populations are re- 
sponding to the same random input. Because all the 
cultures were kept on the same shelf in the same incu- 
bator, in this experiment the random input may be due 
to small changes in the incubator's temperature and 
humidity. 

The census data can also be used to obtain estimates 
of the expected gamma stationary distributions. We 
pooled the census data for the homozygous and poly- 
morphic populations separately, and generated two ob- 
served frequency histograms (Fig. 3). We then fitted 
the gamma density function [6] by estimating the pa- 
rameters a and f3 using the method of maximum like- 
lihood (Johnson and Kotz 1970, p. 189). The fitted 
distributions are represented by the solid curves in Fig. 
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NUMBER OF ADULTS 

FIG. 3. Stationary distributions of adult numbers for the 
(A) homozygous and (B) polymorphic populations. The histo- 
grams represent the observed distributions and the smooth 
curves are the fitted gamma density functions. N is the number 
of observations. Both density functions are plotted on the 
same scale in (C). The vertical dashed lines in (C) locate the 
means for each distribution. 

3. For the homozygous cultures, we estimated 6 = 
49.92 + 3.94 and p = 3.07 + 0.244, and for the 
polymorphic populations 6 = 74.39 -+ 5.8 1 and p = 
3.294 + 0.354. The standard errors of these estimates 
were computed using the asymptotic (large sample) for- 
mulas given by Johnson and Kotz (1970, p. 188). In 
both cases, the estimated values of a and P are highly 
correlated (r  = -0.995). 

We evaluated the gamma expectation using a x2 test 
for goodness of fit. The expected values for each fre- 
quency interval were obtained by numerical integration 
of the fitted gamma density functions. The computed x2 
statistics were compared with the table values at the 5% 
probability level with n - 3 degrees of freedom, where 
n is the number of frequency intervals. For both the 
homozygous and polymorphic distributions, we ac- 
cepted the gamma hypothesis. 

We also used the x2 procedure to test our data for 
normality. For the homozygous populations, we ac- 
cepted the normal distribution at the 5% probability 
level. The observations in the right tail of the observed 
polymorphic frequency distribution (Fig. 3) forced us to 
reject the assumption of normality. Nevertheless, the 
large estimated values of the gamma shape parameters 
for both groups suggest that the normal distribution is a 
fair approximation for these data. 

Our theoretical results provide us with some predic- 

tions concerning the mean and variance of adult num- 
bers. As we have already noted, the polymorphic and 
homozygous populations differ most significantly with 
respect to their density-independent rates of recruit- 
ment. Assuming that the parameter X is larger in the 
polymorphic group, we can use [7] and [8] to make 
qualitative predictions about the relative magnitudes of 
the means and variances of the two distributions. First, 
an examination of [7] tells us that an increase in X will 
result in an increase in E[N], that is, dE[N]/dX > 0. 
Similarly, [8] implies that, unless X is very large rela- 
tive to D (unless XID > 4.92), an increase in X causes 
an increase in the variance (d Var(N)/dX > 0). These 
two hypotheses can be tested with the experimental 
data. 

We compared the means and variances of the homo- 
zygous and polymorphic distributions using statistical 
tests based upon the assumption of normality. Using an 
approximate student's t-test for unequal variances 
(Snedecor and Cochran 1967, pp. 1 14 - 1 1 5), we found 
that the mean for the polymoprhic distribution (N = 
179.2) is significantly larger than the mean for the 
homozygous distribution (N = 153.6) at the 0.001 
level of probability. A test for the equality of the vari- 
ances (Snedecor and Cochran 1967, p. 1 16) also 
revealed a significantly larger variance for the poly- 
morphic group (Var(N) = 620.3) when compared to 
the homozygous group (Var(N) = 468.6) at the 0.05 
level of probability. These results support our theoreti- 
cal predictions provided the ratio of X to D is not too 
large. 

We also used our time series to compute the auto- 
correlations of adult numbers. We estimated the auto- 
correlation of order T by paring the adult census number 
at week t with the adult number at week t + T for each 
replicate. These paired observations were pooled within 
the homozygous and polymorphic groups, and an over- 
all correlation coefficient was calculated in the usual 
way for both groups. This procedure was repeated for 
values of T ranging from 2 to 20 weeks at intervals of 
2 weeks, which is the average period between censuses. 
For both groups, this yielded 10 serial correlations of 
adult numbers. We then corrected the estimated cor- 
relation coefficients of order T by dividing the values by 
( 1 - ( T I  n)), where n is the total number of paired data 
points used in the computation. This procedure removes 
the bias in an autocorrelation estimate (Bloomfield 
1976, p. 184). These corrected estimates are plotted in 
Fig. 4. 

The estimated autocorrelations were used to evaluate 
the theoretical predictions based upon [9]. First, we 
note that although these predictions are based upon a 
linear model, this linear approximation is valid if the 
fluctuations in population size are not very large. For 
both our distributions, the coefficient of variation is 
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+I.O ( A )  HOMOZYGOUS buted, then Bartlett (1946) has shown that the variance 

TIME LAG IN WEEKS 

FIG. 4. Stationary autocorrelations of adult numbers ver- 
sus time lag for the (A) homozygous and (B) polymorphic 
populations. The circles and triangles are the observed auto- 
correlations. The solid curves are the fitted theoretical auto- 
correlation functions obtained from [lo]. The dashed curves 
form confidence bands of 5 2  standard errors, and were com- 
puted using [14] for the expected variance of the auto- 
correlations. 

0.14, suggesting that our use of the linear model is 
reasonable. Using a nonlinear least squares procedure, 
we fit the predicted [lo] to our serial correlations. The 
fitted functions appear in Fig. 4. For both groups, the 
regression estimates for the eigenvalues are h; = 
-0.258 + 0.025 for the homozygous populations and 
h; = -0.330 + 0.035 for the polymorphic group. Be- 
cause A = D(log(D/X)), the smaller estimated value 
for the polymorphic populations is consistent with the 
assumption that the parameter X is larger for this group. 
We also used the least-squares procedure to evaluate the 
alternative prediction [12] which is based on the 
assumption of random pink noise. For the homozygous 
autocorrelations, the least-squares fit continued to im- 
prove as p 7 m, yielding our original estimate of A 
from the white noise model. For the polymorphic auto- 
correlations, [12] did provide a slightly better fit, with 
a coefficient of variation of 0.94. However, the esti- 
mated values of h; = -0.456 r 0.173 and 6 = 
- 1.144 +- 0.939 also suggest that the time scale for the 
environmental fluctuations is significantly shorter than 
the time scale for the fluctuations in adult number. 

Finally, it is possible to obtain a confidence interval 
on the expected autocorrelation function. If n is the 
number of paired observations used to compute the 
autocorrelation and the parent series is normally distri- 

of the estimated autocorrelation is given by 
t m 

[131 var[pN(.r)1 = (1 / n )  C ( P N ( ~ ) ~  + P N ( ~  - 7) , = -m 

PN(J + 7) - ~ P N ( T ) P N ( ~ )  PN(T  + j) 

+ ~ P N ( ~ ) ~ P N ( T ) ~ )  

where PN is the estimated autocorrelation and p~ is its 
expected value. In Appendix 2, we show that substi- 
tution of [lo] into [13] gives 

We used our estimated values for A in [14] to obtain 
confidence regions of 2 2  standard errors on the ex- 
pected autocorrelations of adult numbers assuming ran- 
dom white noise. These confidence regions are drawn 
in Fig. 4. All of our estimated autocorrelations fall 
within these confidence regions. 

Discussion 
The use of stochastic differential equations has been 

a recent subject of dispute among population biologists. 
Nisbet and Gurney (1982) point out that some of the 
value of the predictions based on stochastic differential 
equations are lost because of the assumptions used in 
their derivation. For example, our knowledge of the 
flour beetle system provides no guide to the choice of 
integration rule, Ito or Stratonovich . Nevertheless, we 
were able to evaluate the predictions of our stochastic 
formulation using experimental data. The data sup- 
ported our predictions of a gamma distribution for adult 
numbers and a negative exponential autocorrelation 
function. More importantly, we were able to relate the 
genetic differences between the homozygous and poly- 
morphic groups to observable differences in their sta- 
tionary stochastic dynamics. It is at this level that we 
feel the theory is most useful. 

Perhaps a more difficult question is the nature of the 
stochasticity itself. In the present study, we chose a 
model of environmental stochasticity by introducing an 
exogenous random variable y ( t ) into the adult mortality 
rate. An alternative formulation is based on the assump- 
tion of demographic stochasticity, where the probabilis- 
tic nature of the recruitment and mortality of individuals 
serves as the only source of variation in population size. 
We have also found the latter formulation to be appli- 
cable to Tribolium (Desharnais and Costantino 1982a), 
and at the present time we see no clear-cut reason al- 
ways to choose one model over the other. However, in 
the present study we did find a correlation in the dyna- 
mica1 behaviour of separate populations (Fig. 2) which 
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does suggest environmentally induced fluctuations. 
Finally, it is worth mentioning the many statistical 

difficulties one encounters when analyzing time series 
observations on replicate populations. On one hand, the 
stationary distribution of population size is an abstrac- 
tion which is technically applicable only to a very large 
(infinite) ensemble of independent populations. On the 
other hand, the stationary autocorrelation function for 
adult numbers is an abstraction applicable only to a very 
long (infinite) time series for a single population. Of 
course, any realistic experiment will be intermediate to 
these extremes. Our naive approach has been to pool 
observations among replicates of the same treatment to 

perform our analyses. A more powerful approach 
would take into account observations within and be- 
tween replicates to compare treatments. We eagerly 
await the development of such statistical techniques. 
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Appendix 1 
Here we derive the theoretical autocorrelation functions [lo] and [12]. Our methods closely follow those of Nisbet and 

Gurney (1 982). 
Assume N(t) is a stationary stochastic process which exists over a very long time interval (-T/2, T/2). The Fourier 

transform of N(t) is defined as 

and the inverse Fourier transformation is given by 

[A21 N(t) = (1 / 2 ~ )  N(o)  exp(iot)do 
- m  

Here, i = ( - I ) ' / ~ .  
Now consider the linear stochastic differential equation 

where y(t) represents random noise. As T m, a well-known relationship exists between the Fourier transform of N(t) and 
the transform of its derivative, f(t) = dN/dt . The relationship is 

However, we can use [A31 to calculate j ( o )  directly. This gives 

where + (o )  is the Fourier transform of y (t). If the time interval T is sufficiently large, we may equate [A41 and [A5], obtaining 

This can be used to obtain the spectral density of N(t), which is defined as 

[A71 SN(o) = limit ~ - ' ~ ( N ( o ) f i ( o )  
T - m  

where N(w ) is the complex conjugate of N(w). Assuming E( y (t)) = 0, we also have E($(w)) = E(+(w)) = 0. Because 
sin(oT/2) is a bounded function, 

First we consider the case where y(t) is random "white noise." By definition, E(y(t)) = 0 and S,(o) = 1. Substituting 
into [A81 we obtain, 

for the spectral density of N(t). The autocovariance function COVN(T) = E((N(t) - N*) (N(t + T) - N*)) can be calculated 
from the inverse transformation of the spectral density using 
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[AlO] COVN(T) = (1 / 2 n )  10 SN(O) exp(io / s ( ) d o  
- m 

= ( U N * ) ~  (1 / 2 n )  J-y (A2 + mi)-' exp(io 1 s l)do 
m 

This definite integral is computed easily using the calculus of residues (e.g., Dennery and Krzywicki 1967, pp. 53-60): 

[A1 1] r (A2 + 02)- '  exp(io 1 s l)do = 2n i  limit (o + ih) (A' + w2)-' exp(io 1 s 1) 
- m w- -;A 

= 2 n i  limit (o - iA)-' exp(io 1 s 1) 
w-;A 

= (-n/A) exp(A 1 .r 1) 
The autocorrelation function [lo] is obtained by substituting [A1 1] into [A101 and computing pN(s) = CovN(s)/CovN(0). 

Now assume that y(t)  is random "pink noise" with E(y(t)) = 0 and E(y(t)y(t  + 7)) given by [l I]. The spectral density 
of y(t)  is obtained from the Fourier transform 

[A121 S,(o) = p,(s) exp( - ios)ds 

Substituting [A 121 into [A81 gives 

for the spectral density of N(t). Using [A131 in [AlO], we have 

[A141 C O V ~ ( T )  = (uN*)' ( - p / n )  I: (A2 + mi)-' ( p2  + 02)- '  exp(iw 1sl)dw 

Now we consider two cases. Assume p # A. Let ol = ih and oz = ip .  Using the calculus of residues we have 

[A151 r (A' + "')-I (p' + w2)-' exp(io 1s l)do = 2n i  $ limit ( o  - wJ) (A' + w2)-' (p'  + 02)- '  exp(io I s \ )  
-m / = I  w-w, 

= n ( p Z  - A')-' ( p - '  exp(p 1 s 1) - A - '  exp(A 1 s 1) )  
If p = A, then o, is a pole of order two. From the theorem of residues 

[A161 [ (A' + 02)-' exp(io 1 s l)do = 2n i  limit d ( (o  + ih)' (A' + w2)-' exp(iw 1 s l)) /do 
- m W'WI 

= (n /2h2)  ( s  - A-') exp(h ( s 1) 

Substituting [A151 and [A161 into [A141 and dividing by CovN(0) gives pN(s) in [12]. 

Appendix 2 
Here we detail the steps used to arrive at [14]. 
We begin by substituting our expected autocorrelation function [lo] into Bartlett's general result [13]. This yields 

+m 

[Bl] Var(CN(s)) = ( l / n )  C (exp(2Aljl) + exp(h(lj - + lj + 71)) - 4 exp(A(Ijl + Is\ + Ij + 71)) , = -03 

+ 2 exp(2h(ljl + 171))) 

Now we must consider the values of ( j  - T I  + lj + T I  and IjI + 171 + Ij + T I  for -a < j < +a and -a < s < +a. It 
is easy to see that 

21jl for lj/sl > 1 
[B2] Ij - T I  + Ij + T I  = 2171 for lj/s1 5 1 

and 

2IiI for j/s < - I  
[B3I Ijl + 171 + Ij + 71 = 2171 for -1 5 j/s 5 o 

2( j1  + 2171 fo r j / s  > 0 
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Assume T 2 0. Using [B2] and [B3], we break the doubly infinite series [BI] into five parts and simplify: 
-T - 1 - 1  

[B4] n Var[PN(r)] = 2 C (exp(2h(ljl + T)) - exp(2Aljl)) + C (exp(2hljl) - 3exp(2A~)  + 2exp(2A(ljl + T))) 
= -" J = --7 

T 

+ 1 - exp(2h.r) + C (exp(2Aj) + exp(2h.r) - 2 exp(2A(j + 7))) 
J =  I 

CC 

+ 2 C (exp(2Aj) - exp(2A(j + 7))) 
j = ~ +  1 

The first and last series cancel. The last terms of the two remaining finite series also cancel. This leaves 

Since the terms of the series in [B5] represent a geometric progression, we can write 
T 

[B6] 2 exp(2Aj) = exp(2A) (1 - exp(2A~)) (1 - exp(2h))-' 
j= l 

Substitution of [B6] into [B5] yields [14]. 
As a final note, one can repeat this procedure, mutatis mutandis, for T 6 0 and show that Var(PN(-T)) = Var(PN(T)). 
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