CHAPTER 9

Population Dynamics of
Tribolium

Robert A. Desharnais

The study of population dynamics is complicated by the difficulty
of obtaining experimental evidence that supports the predictions
of mathematical models. Biologists are faced with numerous chal-
lenges such as sampling error, environmental fluctuations, and lack
of replication in the study of populations in the field. One approach
to this problem is to examine experimental populations under con-
trolled laboratory conditions. Flour beetles of the genus Tribolium
are an excellent experimental system for evaluating predictions of
demographic models.

The flour beetle has a long history in population biology. Royal
Norton Chapman (1928) introduced Tribolium as an experimental
insect for the study of population growth. Age structure in flour
beetles was first investigated by John Stanley (1932), a student of
Chapman. Thomas Park (1948) began an extensive series of ex-
perimental investigations on species competition involving T cas-
taneum and T. confusum. Reviews of the vast literature that has
developed on Tribolium can be found in the papers by King and
Dawson (1972), Mertz (1972), and Bell (1982) and in the books by
Sokoloff (1972, 1974, 1977) and Costantino and Desharnais (1991).

There are several reasons for the popularity of Tribolium as an
animal model for the study of populations. Cultures can be main-
tained indefinitely on a simple medium of flour and yeast. The
insects undergo a holometabolous development from egg to adult
in four to six weeks. Adults are about 3 mm in length; hundreds of
insects can be maintained on 8-20 grams of flour. An accurate cen-
sus of the population is obtained by sifting the medium and count-
ing the life stages. Large numbers of replicate cultures can be kept
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in an unlighted incubator under constant conditions of tempera-
ture and humidity. Several species, mutants, and genetic strains
are available. Much is already known about the basic anatomy,
taxonomy, physiology, development, genetics, and ecology of this
beetle (Sokoloff 1972, 1974, 1977).

This chapter focuses on one specific area of population research
involving Tribolium: nonlinear demographic dynamics. The em-
phasis is on approaches and results appropriate to the theme of
“structured-population models” found throughout this book. A
comprehensive review of the literature is not attempted; this chap-
ter deals mostly with the work of my colleagues and me (for more
in-depth treatment of these subjects, see Costantino and Deshar-
nais 1991).

The chapter is divided into four parts. It begins with a brief de-
scription of the life-stage interactions that occur in flour beetle cul-
tures. The remaining three sections illustrate different approaches
that have been used to model these interactions. The first (used
in Desharnais & Liu 1987) is based on the classic Leslie matrix
model for age-structured populations. The next section describes
the integral-equation model of Hastings (1987) and Hastings and
Costantino (1987) for the cannibalism of eggs by larvae; this is
referred to as the “egg-larval submodel.” The last section deals
with the more recent results of Costantino et al. (1995), Cush-
ing et al. (in press), and Dennis et al. (1995), which are based on
the “LPA model,” a system of three difference equations for the
dynamics of the larval, pupal, and adult life stages. Each of these
approaches represents a different trade-off between biological com-
plexity and mathematical tractability.

1 Life-Stage Interactions

One of the most compelling reasons for using Tribolium in the
study of populations is that it provides a fascinating example of
nonlinear demographic dynamics. Laboratory populations main-
tained under constant environmental conditions usually exhibit
dramatic fluctuations in density and age structure. These fluctu-
ations cannot be characterized as stochastic; they are the result
of strong behavioral and physiological interactions among the life
stages—the most important being cannibalism.

The life-stage interactions that drive the dynamics of Tribolium
populations are summarized in Figure 1. The open arrows repre-
sent the life cycle, which, for T. castaneum at 34°C, has a duration
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FIGURE 1. Life-stage interactions in Tribolium.

of approximately 28 days. The single arrows represent the interac-
tions. The arrows labeled cpa and cpa represent the cannibalism
of eggs and pupae, respectively, by adults. The arrow labeled cgr
represents the cannibalism of eggs by larvae. Pupal cannibalism
by larvae occurs at a much lower rate; for simplicity, it can be ig-
nored. The fecundity of females decreases with crowding; this is
represented by the arrow labeled k.

An important consequence of these life-stage interactions is that
Tribolium populations rarely reach the “carrying capacity” of their
laboratory “habitat.” As the number of adult beetles increases,
the effects of cannibalism and reduced fecundity cause decreases in
adult recruitment. As an example, consider adults eating pupae,
ignoring for the moment the other life-stage interactions. If b de-
notes the number of pupae produced per adult, then the number
of potential adult recruits is b/N, where N is the adult number.
However, these pupae must survive cannibalism by adults. Ignor-
ing subscripts, let ¢ denote the probability that a given adult will
find and eat a given pupa in some fixed time interval. The proba-
bility that the pupa is not eaten by the adult is 1 — ¢. If N adults
are present during the time interval, then the probability that the
pupa avoids being eaten by any of the adults is (1 — c)¥, which, if
¢ is small, is approximately equal to e~*Y. The total number of re-
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cruits into the adult population becomes bNe ¢V, which decreases
toward zero as N — oo. The same argument holds for the other
life-stage interactions. A common observation is that the most
cannibalistic species and genetic strains of Tribolium are the ones
with the lowest population densities (Park et al. 1965; Costantino
& Desharnais 1991). This negative exponential function appears
throughout the Tribolium literature.

2 Leslie Matrix Model

An earlier model (Desharnais & Liu 1987) of the demographic
dynamics of Tribolium populations was based on the projection-
matrix approach introduced into biology by Bernardelli (1941),
Lewis (1942), and Leslie (1945). In this model, the beetle life span
is divided into w age classes, where each age class spans a single
day. The population is represented by a w x 1 vector n(t), whose
elements are the densities of each age class at time ¢. A Leslie ma-
trix M(t) is used to project the age structure forward one unit of
time (one day). The dynamics are given by the matrix equation

n(t + 1) = M(t) n(t), 1)
which, in expanded form, is
na(t+1) () ba(t) - buma(t) bu(®) n1(t)
ng(t+1) 51(t) 0 e 0 0 na(t)
nz(t + Nl = 0 sot) -+ 0 0 ns(t)
no(t+1) Do sea® 0 ) \n®
(2

The b;(t)’s and s;(t)’s are age-specific values for fecundities and
survival probabilities, respectively, which, in general, vary in time.

The strategy of the 1987 model was to represent the vital rates
of the Leslie matrix by functions that capture the basic biology
described in Figure 1 using as few parameters as possible. Param-
eters were estimated from data, and the model simulations were
compared with experimental results. Inferences about the effects
of life-stage interactions on the demographic dynamics of popu-
lations were obtained using numerical simulations to explore the
model’s behavior in various regions of parameter space. (A more
general description of this model can be found in Costantino &
Desharnais 1991.)
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The first step is to group the age classes into life stages. Based
on estimates of the life-stage durations for the corn oil sensitive
(cos) mutant of T. castaneum (Moffa 1976), the life stages can be
approximated using the following sets of integers: E = {1,2,3} for
eggs, L = {4,5,...,23} for larvae, P = {24, 25,26} for pupae, and
A ={27.28,... ,w = 300} for adults. The densities of each stage
are obtained by summing the age vector over these sets:

Nyjt) =) _ni(t), Je{E,LPA}.
i
For example, N (t) and N (t) are the number of larvae and adults,
respectively.

Fecundity rates depend on the age of females and are reduced by
the effects of crowding. The data of Moffa (1976) suggest that, for
the cos strain, the fecundity of female adults decreases linearly with
age. Rich (1956) showed that the fecundity rates of T. confusum
females decrease as the density of adults increases. These results
Jead to the parameterization of the fecundity terms (Desharnais &
Liu 1987) using

[a—38G - g)] exp[—kNA(t)] forie A,
bi(t) = i <e+int(a/B), (3)
0 otherwise,

where a is the maximum fecundity rate per adult (one-half the
number of eggs laid per female per day), 8 is the slope of the
linear decrease in fecundity with age, k is a parameter describing
the sensitivity of fecundity to the effects of crowding, &€ = min(A)
is the age at which a beetle enters the adult stage, and “int” is the
integer function. These fecundity values comprise the first row of
the Leslie matrix in equation (2).

Survival probabilities involve both “natural” (nonpredatory)
mortality and death due to cannibalism. In the absence of cannibal-
ism, the survival probabilities of eggs and pupae are usually high
(Moffa 1976); for simplicity, no natural mortality is assumed for
these two life stages. Larvae and adults are assigned natural mortal-
ity rates of ur, and pa, respectively. The rate at which a larva con-
sumes eggs depends on the age of the larva; older, larger larvae are
more voracious cannibals of eggs. Let cgr(j) denote the cannibal-
istic rate of a larva of age j. Using the data of Park et al. (1965) for
four genetic strains of T. castaneum, ceL(j) can be approximated
as a linearly increasing function of age: cgr(j) = cg(1+7 — (),
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where cfy;, is the slope of the linear increase and ¢ = min(L), the age
at which a beetle enters the larval stage (Desharnais & Liu 1987).
It is assumed that the rates cga and cpa, at which an adult canni-
balizes eggs and pupae, respectively, are independent of the age of
the adult. With these assumptions, the survival probabilities are

(exp[-cn, 501+ = Omi®)
—cEANA(t)] forie E,
si(t) = T exp(—pL) forielL, (4)
exp [—CPANA(t)] fori € P,
exp(—pa) fori € A,
L £ w.

These probabilities form the subdiagonal of the Leslie matrix in
equation (2).

Data from several sources are used to estimate the parameters in
(3) and (4) (Desharnais & Liu 1987). Table 1 lists these parameters,
their estimates and standard errors, and a reference to the source
of the data. Whenever possible, data on the cos strain of T. casta-
neum were used. However, the estimate of the rate of egg cannibal-
ism by larvae was obtained from the data of Park et al. (1965) for
four different genetic strains of T. castaneum, and the estimates of
the parameters for crowding and egg cannibalism by adults were
obtained from the data of Rich (1956) for the species T. confusum.
(For details on how the numerical estimates and standard errors
were computed, see Desharnais & Liu 1987; Costantino & Deshar-
nais 1991.)

It is possible to make inferences about the rate of population
growth under “density-independent” conditions. If one sets the pa-
rameters k, CEL, CEA, and Cpa equal to zero, the vital rates in the
Leslie matrix M become constants, and one obtains the classic lin-
ear model of geometric growth. The net reproductive rate is given
by Ry = Z:’zl $;—1b;, where so = L. Assuming a 1:1 sex ratio,
this equals half the number of eggs a female beetle is expected to
produce in her lifetime. The daily rate of population increase, Aos
is the dominant eigenvalue of the matrix M, and the intrinsic rate
of increase per day, ro, is the natural logarithm of this eigenvalue.
For the estimates in Table 1, we obtain Ry = 185.5, Ao = 1.140,
and ro = 0.131 per day. A female is expected to produce approx-
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TABLE 1. Parameter Estimates for the Leslie Matriz Model

Para-
meter Description Estimate (£SE) Source of Data
UL larval 0.0251 £ 0.0020 Desharnais &
mortality Liu (1987)
LA adult 0.0130 + 0.0009 Desharnais &
mortality Costantino (1980)
o maximum 7.96 £ 0.20 Moffa (1976,
fecundity p. 51)
8 decrease in 0.0664 + 0.0028 Moffa (1976,
fecundity p.- 51)
with age
k decrease in 0.00164 £ 0.00006  Rich (1956,
fecundity Table IV)
from crowding
cg;, larval 0.000760 &+ 0.000047 Park et al.
cannibalism (1965,
of eggs (slope) Table 10)
cea  adult 0.00252 &+ 0.00016  Rich (1956,
cannibalism Table IV)
of eggs
cpa  adult 0.00558 £ 0.00026  Jillson &
cannibalism Costantino
of pupae (1980)

imately 371 eggs in her lifetime. Once a constant age distribution
is obtained, the population density increases by 14 percent each
day—a prolific rate of growth. It is clear why flour beetles are
such an important pest of stored grain and food products. These
conclusions are consistent with other estimates for T. castaneum
cultured at the same temperature and humidity (Sokoloff 1974,
Table 11.22).

Predictions were obtained for the equilibrium densities and pop-
ulation stability. A unique equilibrium age vector n* > 0 exists if
and only if Ry > 1 (Desharnais & Liu 1987). Determining the sta-
bility of this equilibrium requires calculating a “stability matrix” S
whose elements are the coefficients of a “linearization” of the model
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FIGURE 2. Densities of adults (heavy lines), large larvae plus pupae
(dashed lines), and small larvae (thin lines) for (a) control replicate “A”
(Desharnais & Liu 1987) and (b) the Leslie matriz model. (a) circles,
triangles, Census points; Curves, interpolating cubic splines.

in the neighborhood of n*. The eigenvalues of S determine the
stability of the equilibrium; if the modulus of the dominant eigen-
value is less than one, the equilibrium is stable. Estimates of the
parameters have been used to provide expressions for computing
the elements of n* and S (Desharnais & Liu 1987; Costantino & De-
sharnais 1991). When grouped into life stages, the predicted equi-
librium densities are 430 eggs, 134 larvae, 10 pupae, and 88 adults,
which are within the ranges normally observed for this species.
However, this equilibrium is unstable; the dominant eigenvalues
are the complex conjugates A1, Az = 1.00+0.234 with a modulus of
1.03. The largest subdominant eigenvalues are A3, g = 0.9940.021¢
with a modulus of 0.99. All the remaining eigenvalues are complex
and unique. The linearized stability analysis predicts an unstable
equilibrium.

The model’s demographic dynamics show good qualitative agree-
ment with those observed in the laboratory. Figure 2 is a plot of
the life-stage densities for control replicate “A” of an earlier ex-
periment (Desharnais & Costantino 1980) and the Leslie matrix
model. For this comparison, the larval age class is divided into two
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TABLE 2. Bifurcation Values for the Leslie Matriz Model

Ratio to
Model Bifurcation Estimated Effect of Increasing

Parameter Value Value the Parameter
ML 0.0788 3.14 stabilize

@ 0.718 0.0902 destabilize
k 0.0211 12.9 stabilize

CEL 0.000146 0.192 destabilize
CEA 0.00896 3.56 stabilize
CPA 0.187 33.5 stabilize

groups of equal duration. The number of pupae is combined with
the number of large larvae. Cubic splines interpolate the census
data, which were collected every two weeks. Large oscillations in
the number of immatures are evident. Smaller oscillations in the
number of adults are predicted by the model; these low-amplitude
oscillations are not obvious in the census data. With respect to the
magnitudes of the life-stage oscillations, there is good agreement
between the model and the census data. The same observation can
be made for additional data on four control populations and nine
populations subjected to demographic perturbations (Desharnais
& Liu 1987). Overall, the model does a good job of capturing the
qualitative behavior of the life-stage densities.

Numerical analyses of the Leslie matrix model provide infor-
mation on the effects of each parameter on demographic stability.
Varying each parameter singly, while keeping the remaining param-
eters at their estimated values, and employing a simple bisection
searching algorithm, “bifurcation points” can be located at which
the equilibrium loses stability (Desharnais & Liu 1987). The re-
sults are presented in Table 2. Oscillations persist for all values of
B and pa, so these parameters are absent from the table. Increas-
ing the rate of reproduction, «, or the rate at which larvae eat
eggs, CeL, has a destabilizing effect; increasing the remaining pa-
rameters stabilizes the model. The ratios of the bifurcation values
to the estimated values suggest that large modifications of the pa-
rameters would be required to stabilize the model; the laboratory
populations lie well within the unstable region of parameter space.
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A significant drawback of the nonlinear Leslie matrix model is
that it is analytically intractable. A local stability analysis requires
the calculation of the eigenvalues of a 300 x 300 matrix. Laborious
numerical simulations are required to gain some modest informa-
tion on the effects of the parameters on population growth; a sys-
tematic mapping of parameter space is not practical. So although
the model includes several biologically realistic characteristics, it
is limited in its ability to provide insight into the demographic dy-
namics of Tribolium. The next section describes a different mod-
eling approach that sacrifices some biological realism in exchange
for mathematical tractability.

3 Egg-Larval Submodel

In the Leslie matrix model of the preceding section, it was found
that the cannibalism of eggs by larvae is destabilizing; this life-
stage interaction drives the huge oscillations found in the immature
age classes. By contrast to the dynamics of the immatures, the
fluctuations in adult numbers are relatively small. A continuous-
time model that focuses on the dynamics of the egg and larval life
stages is called the “ggg-larval submodel” (Hastings 1987; Hastings
& Costantino 1987; Costantino & Desharnais 1991).

The egg-larval submodel is a special case of the McKendrick-
von Foerster equation. This treatment of population growth, which
was made popular by von Foerster (1959), is built on the work of
Sharpe and Lotka (1911), Lotka (1925), and McKendrick (1926).
If n(z,t) denotes the aumber of individuals of age = at time t, the
aging and death of the population is given by

9

at"
where p(z,t) is the mortality rate for an individual of age = at time
t. Reproduction is expressed as a boundary condition, n(0,t) =
B(t), where B(t) is the total birthrate of the population. Defining
b(z,t) as the number of offspring born to an individual of age z at
time t, the total birthrate is computed using

(0,8) + (1) = —H(E O (D), Q

B(t) = /Ow n(z,t) b{z,t) dz (6)

where w is the maximum attainable age. To complete the model,
one must also specify an initial age distribution n(z,0). In integral
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form, the model can be written as

n(z—t,0) exp(—/

n(0,t—x) exp(—/ wuis,s+t—z) ds) forr<t.
0
(7)

T

,u(s,s+t—-x)ds> fort<z<w,
n{z,t) = t

The first expression is for the mortality of members of the initial
population; the second is for individuals born after time ¢ = 0.
Webb (1985) provided detailed derivations and analyses of models
of the McKendrick—von Foerster type.

The egg-larval submodel for flour beetles is based on two simpli-
fying assumptions. First, it is assumed that the numbers of adults
are constant and that these adults produce a steady supply of new
eggs. The recruitment of new eggs into the population can be writ-
ten as n(0,t) = B, where B is a constant representing the net rate
at which new eggs are produced by adults. The second simplifying
assumption is that the rate at which a larva eats eggs is indepen-
dent of the age of the larva. This assumption is unrealistic because
the cannibalistic voracity of larvae increases with size. Unfortu-
nately, the analysis of the model becomes intractable with age-
dependent rates of cannibalism. As a rough approximation, it will
be assumed that all larvae eat eggs at a constant rate c. With these
assumptions, the mortality rates of eggs and larvae are given by

fi <D
(z,t) = pg +cNp(t) for0<z < Dg , ()
UL for Dg <z < Dg+ Dy, ,

where Dg and Dy, are the durations of the egg and larval stages,
respectively, ug and up are the “natural” mortality rates for eggs
and larvae, and the total number of larvae is given by

Dg+Dy
Ni(t) = /D n{z,t)dz. 9)

Since pupae do not contribute to the mortality of eggs or larvae,
they are excluded from the model. Assuming an initial population
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of adults only, substitution of (8) into (7) gives

Bexp (- g — ¢ fo Nu(t - s)d5>
for0<z < DE ,
n(z,t) =
n(Dg,t — %+ Dg)exp ( — pp{z — DE))
fOI‘DE§$<DE+DL .
(10)
The first equation is for eggs; which must survive both natural
mortality and cannibalism, and the second is for the natural mor-

tality of larvae. Using (10) in (9) yields an integral equation for
the total number of larvae:

Du Dg
Np(t) = BeXP(—uEDE)/ exp|—pLY — C/NL(t —s—y)ds |dy,
0 0

11)
where y = = — Dg is the age of larvae from the time of hatch-
ing. This single integral equation can be used to investigate the
dynamics of the model.

Hastings (1987) derived results for the equilibrium and local sta-
bility of (11) for the case where pp = 0. He showed that a unique
equilibrium exists whenever B > 0. This equilibrium is stable pro-
vided that

¢B < yexp(ueDE + ~vDLDE) ; (12)
where 7 is given by
y=0%/12~ cos(Dgb) — sin(DL0)] (13)

and § = 27/(Dg+Dy). Figure 3 is a plot of the stability boundaries
for several egg-stage durations.

Hastings (1987) also derived results that describe the behavior of
the model near the stability boundary. As the rate of cannibalism,
¢, or the birthrate, B, increases, the model undergoes a subcritical
Hopf bifurcation at the point where the inequality (12) no longer
holds. This means that in the neighborhood of the boundary, a
stable equilibrium is surrounded by an unstable orbit. Initial con-
ditions inside the unstable orbit approach the stable equilibrium;
initial conditions outside the unstable orbit approach another at-
tractor. The unstable orbit defines a local domain of attraction
for the stable equilibrium. This implies the existence of multiple
attractors for some subset of parameter space.
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FIGURE 3. Stability boundaries of the egg-larval submodel from equation
(12) with ug = 0. Each curve is for a different duration of the egg stage
(circled numbers). Parameter values below the curve result in a stable
equilibrium.

Figure 4 shows two of the numerical results from a discretized
analogue of the egg-larval submodel (Costantino & Desharnais
1991). The inner trajectory approaches a stable equilibrium point,
and the outer trajectory approaches a stable limit cycle. Two stable
attractors—a point equilibrium and a loop—coexist for the same
parameter values. In fact, for the parameter values in this figure,
multiple attractors are found for egg production rates in the range
from B = 134 to B = 424. From a biological point of view, this is
a significantly large region of parameter space.

The parameters of the egg-larval submodel can be estimated
from experimental data. Park et al. (1961, 1964, 1965) published
life-history and census data for four genetic strains of T. confusum
(strains bI-bIV) and four genetic strains of 7. castaneum (strains
¢I-cIV). From their results, estimates and standard errors were
calculated for the parameters Dg, Dy, ¢, and B of the egg-larval
submodel (for details, see Costantino & Desharnais 1991). Table 3
shows the dynamics predicted by the egg-larval submodel. Numer-
ical simulations were used to determine the smallest value of the
product c¢B at which a stable cycle persists; below this value, the
equilibrium point is globally stable. Expressions (12) and (13) pro-
vide the bifurcation point for ¢cB where the equilibrium loses sta-
bility. The interval bounded by these two values is a region of
parameter space containing multiple attractors; a stable point and
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FIGURE 4. Simulations of the egg-larval submodel for Dp = 4 days,
Dy = 18 days, B = 150 eggs/day, ¢ = 0.025, and ug = pL = 0. The
solid curves are trajectories with two different initial conditions (circles).
The inner trajectory spirals toward the stable equilibrium (asterisk). The
outer trajectory spirals toward a stable cycle (dashed loop). An unsta-
ble cycle (dotted loop) defines the domain of attraction of the stable
equilibrium.

a stable orbit coexist. For values of ¢B above the bifurcation point,
only a stable orbit is found. The estimated value of the product
¢B allows a classification of the predicted dynamics for the eight
genetic strains. As this table indicates, all three possibilities are
predicted: three of the strains have a globally stable point attrac-
tor, four of the strains are in the interval of multiple attractors,
and a single strain, cI, is predicted to have only a stable orbit.
This suggests that a rich spectrum of dynamic behaviors can be
found in biologically relevant regions of parameter space.

The qualitative predictions of the egg-larval submodel are valid
for less-restrictive assumptions. Although no larval mortality was
assumed (pr, = 0), when this restriction is relaxed somewhat, a
subcritical Hopf bifurcation is still predicted (Hastings 1987). A
similar model with all four life stages has also been analyzed (Hast-
ings & Costantino 1987; Costantino & Desharnais 1991). Expres-
sions (12) and (13) give approximate stability bounds, and a region
of multiple attractors still exists. Adding age-dependent egg canni-
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TABLE 3. Parameter Estimates and Dynamics Predicted by the Egg-
Larval Submodel for Eight Genetic Strains of Tribolium

Onset of Bifurcation Est’d

Genetic Cycles Point Value  Predicted
Strain Dg DL (e¢B) (eB) (¢B)  Dynamics
ol 5.37 18.96 1.60 2.60 0.75 stable point
bII 5.43 20.11 1.62 2.93 1.67 multiple
attractors
bIII 5.63 18.89 1.41 2.06 1.01 stable point
bIV. 5.60 19.92 1.48 2.45 1.54 multiple
attractors
cl 4.09 17.58 3.13 8.51 30.32 stable orbit
cll 417 25.11 3.56 38.52 2.94 stable point
clll 4.32 19.02 2.83 8.35 5.07 multiple
attractors
cV. 419 2093 3.28 14.96 3.75 multiple
attractors

balism by larvae complicates the results (Costantino & Desharnais
1991). In general, a subcritical Hopf bifurcation does not always
exist. However, if larval cannibalism rates increase quickly as larvae
grow, then multiple attractors are found. Unfortunately, detailed
information on age-specific cannibalism rates is needed to make
predictions for any particular population.

4 Life-Stage Models

Recent efforts have concentrated on an interdisciplinary research
program that integrates model derivation and analysis, parameter
estimation and model verification, and design and implementation
of biological experiments. The goal is to provide solid experimental
evidence for a variety of nonlinear dynamic behaviors in flour bee-
tle populations. Mathematical and statistical analyses are used to
make a priori predictions concerning the range of dynamic behav-
iors; Tribolium experiments are designed to reveal transitions from
one type of dynamic behavior to another. This section describes re-
cent results and current efforts of the author and his collaborators
(Costantino et al. 1995), which are based on this approach.
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Discrete Generations

The simplest “life-stage” model of population growth is a discrete-
generation model involving a single reproductive life stage. If N(¢)
denotes the number of individuals in the reproductive life stage,
then the population dynamics can be described using a simple dif-
ference equation of the form N(t + 1) = bN(t)f[N(t)], where b is
the per capita reproductive rate and f(N) is a “density-regulating
factor” that depends on population size. A large number of func-
tional forms for f(IV) have appeared in the literature (see, e.g., May
& Oster 1976). For Tribolium, the function f(N) = (N a-lg=cN at-
tenuates population growth rates at high densities and allows for
an “Allee effect” (Allee 1931) at low densities when a > 1. The
population growth model becomes

N(t+1) = BN(t)* exp [—cN(t)] , (14)

where 3 = bC. A graph of the right-hand side of (14) as a function
of N shows a “one-humped curve” that is common to many popu-
lation growth models. Typically, as the reproductive rate increases,
these models undergo transitions from a stable equilibrium, to a
period-doubling cascade (stable cycles of period 2, 4, 8, ...}, to
chaos, with bifurcations occurring at calculable critical points.

Parameter estimation and model evaluation make use of a sto-
chastic analogue of the deterministic population model. At popula-
tion sizes typical of flour beetle cultures, variability due to environ-
mental fluctuations outweighs the component due to demographic
fluctuations (Dennis & Costantino 1988). A characteristic of mod-
els with environmental variability is that noise is additive on a
logarithmic scale (Dennis et al. 1991). Applying these ideas, the
stochastic version of (14) is

N(t+1) = BN(t)* exp [—cN(t) + Z(t)], (15)

where Z(t) has a normal distribution with a zero mean and vari-
ance o2. It is assumed that there is no serial autocorrelation in
the random components; that is, Z(0), Z(1), Z(2),... are uncor-
related. This formulation preserves the deterministic model as the
conditional expectation of In N(t + 1) given N(t):

E[lnN(t-{— 1) | N(t):n] = ln[ﬁn“ exp(—cn)]. (16)

Each conditiona]l “one-step” transition can be treated as an inde-
pendent observation for the purposes of parameter estimation and
model evaluation.
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FIGURE 5. Results of the pilot study of the discrete-generation model
(14). (a) The numbers of adults recovered plotted against the numbers
of adults from the preceding generation; the smooth curve is based on
equation (14) with the mazimum-likelihood parameter estimates. (b) Pre-
dicted bifurcation diagram for the populations with § as the bifurcation
parameter.

Flour beetles can be cultured to mimic the discrete-generation
life history implied by (14). Adults are placed in fresh medium and
allowed to oviposit for a fixed interval of time called the “breed-
ing interval.” At the end of the breeding interval, all adults are
removed and the medium containing eggs is returned to the vials.
Five weeks later, the flour is sifted and the next generation of
adults is counted. The immatures that do not reach adulthood are
discarded. The new adults are placed in fresh medium to initi-
ate another generation. By altering the duration of the breeding
interval, one can control the rate of reproduction.

A pilot study was conducted to investigate the potential of this
experimental protocol for studying discrete-generation population
dynamics. A fixed number of adults of the sooty strain of T. casta-
neum was placed into vials containing 20 grams of medium. Adult
numbers ranged from 4, 8, 12, ..., to 100 for a total of 25 treat-
ments. Each adult density was repeated. After a breeding interval
of seven days, the adults were removed and the offspring were al-
lowed to develop for five weeks.

The results of the pilot study are plotted in Figure 5. The data
are the equivalent of a one-dimensional map of adult numbers in
two consecutive generations (Fig. 5a). The model (15) was fitted
to the data using the method of maximum likelihood. Parameter
estimates of 8 = 10.8, a = 1.68, and ¢ = 0.076 were obtained.
Figure 5b shows the predicted dynamics as a bifurcation diagram
with 3 as the bifurcation parameter. The ordinate represents the
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asymptotic values of adult number for a given value of 3, with the
remaining parameters fixed at their estimated values. For small
values of 3, a stable equilibrium is predicted. As (8 increases, this
equilibrium bifurcates into a stable 2-cycle. The 2-cycle gives way
to a 4-cycle, 8-cycle, etc., until acyclic chaotic dynamics appear.
Within the chaotic region are intervals of “period locking.” Note
that the estimated value of 3 = 10.8 places the experimental pop-
ulations well within the chaotic region.

This protocol opens the opportunity of documenting experimen-
tally transitions in dynamic behavior. By shortening the breeding
interval, one can decrease the value of 8. With an array of exper-
imental treatments, it should be possible to cover the sequence of
dynamic behavior from stable equilibria, to period doublings, to
chaos. Such experiments are currently under way.

QOverlapping Generations

A structured model is required to account for population dynamics
in the case of overlapping generations. These are coupled differ-
ence equations or matrix equations that describe the dynamics of
two or more life stages or groupings of life stages (Cushing 1988;
Caswell 1989). Dennis et al. (1995) have proposed the use of three
coupled difference equations to describe the dynamics of larvae,
pupae, and adults in Tribolium cultures:

L(t+1) = bA(t) exp [— ceaA(t) - cELL(t)], (17a)
P(t+1) = L(t)(1 — p) (17b)
At +1) = P(t)exp [—CPAA(t)] + AL — pa) - (17¢)

Here L(t) refers to the number of feeding larvae, P(t) refers to
the number of nonfeeding larvae, pupae, and callow adults, and
A(#) refers to the number of reproductive adults. The unit of time
is taken to be the maturation interval for feeding larvae, so that
after one unit of time either a larva dies or it survives and pupates.
This unit of time is also the cumulative time spent as a nonfeeding
larva (sometimes called a “prepupa”), pupa, and callow adult. The
quantity b (> 0) is the number of larval recruits per adult per
unit of time in the absence of cannibalism. The fractions py, and
pa are the larval and adult probabilities, respectively, of dying

from causes other than cannibalism. The exponential nonlinearities
account for the cannibalism of eggs by both adults and larvae and
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the cannibalism of pupae by adults (Fig. 1). It is assumed that the
only significant source of pupal mortality is cannibalism by adults.
Dennis et al. (1995) referred to this model as the “LPA model.”

Adding noise on a logarithmic scale produces the following sto-
chastic model:

L(t+1) = bA(t) exp [ — ceaAlt) — cer L(t) + Z1(£)],  (18a)

P(t+1) = L{)(1 - ) exp [Z(t)], (18b)

At +1) ={P(t)exp [ - ceaA()] + A®)(1 - ) }
x exp[Z3(t)].

The random vector Z(t) = (Z1(t), Z2(t), Z3(t)) is assumed to have
a trivariate normal distribution with mean vector of 0 and a covar-
iance matrix of ¥. Including covariance terms in the off-diagonal
elements of X allows for the possibility of correlations in the growth
fluctuations among the life stages during the same time intervals.
However, we assume the correlations between time intervals to be
small by comparison; that is, Z(0), Z(1), Z(2), ... are uncorrelated.

The dynamics of the deterministic model (17) are preserved by
the stochastic model (18) as conditional expectations on a loga-
rithmic scale:

(18c)

E[lnL(¢t +1)] = In[baexp(—cgaa — cgLt)], (19a)
E[lnP(t+1)] =In[e(1 - p1)], (19b)
E[ln A(t+1)] = In[pexp(—cy,a) + a(l — ua)], (19¢)

given that L(t) = ¢, P(t) = p, and A(t) = a. This result allows
an explicit connection between the mathematical model and the
population time-series data. Given the numbers of each life stage at
time ¢ and estimates for the model parameters, one can predict the
expected numbers of each life stage at time ¢+ 1 (two weeks later).
Using the stochastic model (18), one can choose a set of parameter
values that maximizes the joint probability of the one-time-step
transitions in the observed time series. The model is connected to
the data by one-step forecasts, not by continued iteration.

Dennis et al. (1995) have applied this maximum-likelihood proce-
dure to earlier data on the cos genetic strain of T. castaneum (De-
sharnais & Costantino 1980). They used the 4 control cultures for
parameter estimation and the 9 cultures subjected to demographic
perturbations for model evaluation. Sophisticated diagnostics were
conducted on the residuals. The LPA model (17) did a remarkably
good job of predicting the dynamics of all 13 populations. Partic-
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TABLE 4. Parameter Estimates for the LPA Model

Parameter Estimate 95% Confidence Interval

b 1.7 (6.2, 22.2)
pa 0.11 (0.07, 0.15)
pL 0.51 (0.43, 0.58)
CEA 0.011 (0.004, 0.180)
CEL 0.009 (0.008, 0.011)
cpa 0.018 (0.015, 0.021)

ularly impressive was the fact that a single set of parameter values
from the control cultures was able to describe the dynamics of the
9 demographically manipulated cultures, even though none of the
data from these manipulated populations was used to obtain the
parameter estimates.

Maximum-likelihood parameter estimates for the LPA model are
given in Table 4. The 95 percent confidence intervals are based on
profile likelihoods (McCullagh & Nelder 1989). When these pa-
rameter values are substituted into (17), the model simulations
approach a stable 2-cycle.

Figure 6 shows the one-step predictions (Desharnais & Costan-
tino 1980, control replicate “A”). Keep in mind that a single set
of parameter values is used for all the predictions. The model does
a particularly good job of prediction in the region of strong os-
cillations. Dennis et al. (1995) provided similar plots for all 13
populations.

Equilibrium densities and stability boundaries can be obtained
numerically for the LPA model. Although no closed-form solution
exists for the equilibrium densities of each life stage, it can be
shown that a single unique nontrivial equilibrium exists provided
that b > pa/(1 — pr) (Dennis et al. 1995). This equilibrium can
be found numerically by locating the unique real root of a sim-
ple nonlinear equation. The 3 x 3 linearized stability matrix S can
be expressed in terms of the model’s parameters and equilibrium
densities. Given parameter values and the corresponding equilib-
rium life-stage densities, the eigenvalues of S can be computed. If
the moduli of these three eigenvalues are all less than unity, the
equilibrium is stable. This process can be repeated for different
combinations of parameter values to map out the stability bound-
aries in parameter space.
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FIGURE 6. Densities of (a) larvae, (b) pupae, and (c) adults (Desharnais
& Costantino 1980, control replicate “A”). Solid circles, Census points;
open circles, one-step forecasts.

Figure 7 shows the stability boundaries of the LPA model as
functions of the adult mortality rate, ua, and the rate of egg can-
nibalism by larvae, cgr. For this figure, the remaining parameters of
the LPA model were set at their estimated values (Table 4). Cross-
ing the stability boundary to the left of the large peak represents
a bifurcation into a stable 2-cycle. Here, a single real dominant
eigenvalue of S becomes equal to —1. Asymptotically, life-stage
densities oscillate between two discrete values. Crossing the stabil-
ity boundary to the right of this peak represents a bifurcation into
an invariant loop. Here S has a pair of complex conjugate eigen-
values of modulus one. Asymptotically, life-stage densities move
aperiodically around a closed loop. The solid circle in Figure 7
shows the location of the cos genetic strain of T. castaneum in
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FIGURE 7. Stability boundaries for the LPA model (17) as a function of
the adult mortality rate and the rate of egg cannibalism by larvae. The
remaining parameters were set at the estimated values for the cos strain
of T. castaneum. Solid circle, Location of the cos strain in parameter
space; open circles, adult mortality treatments in an ezperimental study
now under way-

the unstable region of parameter space near the 2-cycle boundary.
Its location in parameter space is consistent with the demographic
dynamics observed in Figure 6.

The stability boundary in Figure 7 has stimulated new exper-
iments. In a recent study (Costantino et al. 1995), adult mor-
tality rates were manipulated by removing or adding adults at
the time of census to make the total number of adults that died
during an interval consistent with a predetermined value of pa-
In addition to a control (no manipulation), values of ps were
chosen to be 0.04, 0.27, 0.50, 0.73, and 0.96 (Fig. 7, open cir-
cles). This experimental design was implemented using two dif-
ferent genetic strains of T. castaneum. There were four replicates
for each combination of adult mortality rate and genetic strain.

The predicted outcomes from this experimental design are vi-
sualized in Figure 8. This bifurcation diagram was obtained by
iterating the deterministic LPA model for different values of pa,
with the remaining parameters fixed at their estimated values (Ta-
ble 4). This graph shows the asymptotic behavior of the LPA model
as one moves along the dashed line in Figure 7. At very low adult
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FIGURE 8. A bifurcation diagram for the LPA model (17) with adult
mortality rate as the bifurcation parameter. The remaining parameters
were set at the estimated values for the cos strain of T. castaneum.
Arrows show the adult mortality treatments of Costantino et al. (1995).

mortalities, there is a stable point equilibrium, but this equilibrium
soon bifurcates into a stable 2-cycle. This 2-cycle is followed by a
narrow region of multiple attractors (0.357 < pa < 0.363) where
stable equilibria coexist with stable 2-cycles. As ua increases, pos-
itive equilibria persist, whereas the stable 2-cycles disappear. At
high values of adult mortality, there is a bifurcation to an invari-
ant loop. Adult-mortality treatments were chosen to sample these
different dynamic behaviors (Fig. 7, open circles; Fig. 8, arrows).
The goal is to provide convincing evidence for aonlinear population
dynamics by documenting transitions in the demographic behav-
ior of experimental populations. For the results of this study, see
Costantino et al. (1995).

5 Concluding Remarks

The research results described in this chapter are joined by a com-
mon theme: the integration of theoretical and experimental ap-
proaches in order to study nonlinear dynamics in structured pop-
ulations. In this regard, the Tribolium experimental system pro-
vides many opportunities. This animal model shows the potential
for exhibiting many of the exotic behaviors so far identified only
in theoretical models: discrete-point cycles, limit cycles, invariant
loops, multiple attractors, strange attractors, chaos. Through a
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careful choice of species, genetic strains, environmental conditions,
and husbandry protocols, one can “sample” parameter space ex-
perimentally, obtaining populations that cover the entire spectrum
of dynamic behaviors. The possibility exists for “nudging” pop-
ulations across boundaries within parameter space, documenting
experimentally transitions in behavior. If multiple attractors are
predicted, a variety of initial conditions could be used to seek out
the attractors. If multiple attractors are found, perturbations could
be used to shift a population from one domain of attraction to an-
other. This work is only beginning. The prospects are exciting.

Acknowledgments

The research described in this chapter was supported in part by
U.S. National Science Foundation grants DMS-9206678, DMS-
9306271, and DMS-9319073.

Literature Cited

Allee, W. C. 1931. Animal Aggregations. University of Chicago Press.

Bell, A. E. 1982. The Tribolium model and animal breeding. Second
World Congress on Genetics and Applications to Livestock Production
5: 26-42.

Bernardelli, H. 1941. Population waves. Journal of the Burma Research
Society 31: 1-18.

Caswell, H. 1989. Matriz Population M odels. Sinauer, Sunderland, Mass.

Chapman, R. N. 1928. Quantitative analysis of environmental factors.
Ecology 9: 111-122.

Costantino, R. F., and R. A. Desharnais. 1991. Population Dynamics and
the “Tribolium’ Model: Genetics and Demography. Springer-Verlag,
New York.

Costantino, R. F., J. M. Cushing, B. Dennis, and R. A. Desharnais.
1995. Experimentally induced transitions in the dynamic behaviour
of insect populations. Nature 375: 227-230.

Cushing, J. M. 1988. Nonlinear matrix models and population dynamics.
Natural Resource Modelling 2: 539-580.

Cushing, J. M., B. Dennis, R. A. Desharnais, and R. F. Costantino.
In press. An interdisciplinary approach to understanding nonlinear
ecological dynamics. Ecological Modelling.

Dennis, B., and R. F. Costantino. 1988. Analysis of steady-state pop-
ulations with the gamma abundance model and its application to
Tribolium. Ecology 69: 1200-1213.

Dennis, B., P. L. Munholland, and J. M. Scott. 1991. Estimation of
growth and extinction parameters for endangered species. Ecological
Monographs 61: 115-143.




PCOPLTLATION DYXAMICS OF TRIBOLIUM 327

Deagas. B . R A Desharnais, J. M. Cushing, and R. F. Costantino. 1995.
Noakaesar demographic dynamics: Mathematical models, statistical
methods and biological experiments. Ecological Monographs 65: 261—
281,

Desharnais, R. A., and R. F. Costantino. 1980. Genetic analysis of a
population of Tribolium. VII. Stability: Response to genetic and de-
mographic perturbations. Canadian Journal of Genetics and Cytology
22: 577-589.

Desharnais, R. A., and L. Liu. 1987. Stable demographic limit cycles
in laboratory populations of Tribolium castaneum. Journal of Animal
Ecology 56: 885-906.

Hastings, A. 1987. Cycles in cannibalistic egg-larval interactions. Journal
of Mathematical Biology 24: 651-666.

Hastings, A., and R. F. Costantino. 1987. Cannibalistic egg-larva inter-
actions in Tribolium: An explanation for the oscillations in population
numbers. American Naturalist 130: 36-52.

Jillson, D., and R. F. Costantino. 1980. Growth, distribution, and com-
petition of Tribolium castaneum and Tribolium brevicornis in fine-
grained habitats. American Naturalist 116: 206-219.

King, C. E., and P. S. Dawson. 1972. Population biology and the T¥i-
bolium model. Evolutionary Biology 5: 133-227.

Leslie, P. H. 1945. On the use of matrices in certain population mathe-
matics. Biometrika 33: 183-212.

Lewis, E. G. 1942. On the generation and growth of a population.
Sankhya 6: 93-96.

Lotka, A. J. 1925. Elements of Physical Biology. Williams & Wilkins,
Baltimore.

May, R. M., and G. F. Oster. 1976. Bifurcations and dynamic complexity
in simple ecological models. American Naturalist 110: 573-599.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. Chap-
man & Hall, London.

McKendrick, A. G. 1926. Applications of mathematics to medical prob-
lems. Proceedings of the Edinboro Mathematical Society 54: 98-130.

Mertz, D. B. 1972. The Tribolium model and the mathematics of pop-
ulation growth. Annual Review of Ecology and Systematics 3: 51-78.

Moffa, A. M. 1976. Genetic Polymorphism and Demographic Equilib-
rium in Tribolium castaneum. Ph.D. diss. University of Rhode Island,
Kingston.

Park, T. 1948. Experimental studies of interspecies competition. I. Com-
petition between populations of the flour beetles Tribolium confusum
Duval and Tribolium castaneum Herbst. Ecological Monographs 18:
265-308.

Park, T., D. B. Mertz, and K. Petrusewicz. 1961. Genetic strains of Tri-
bolium: Their primary characteristics. Physiological Zoology 34: 62-80.

Park, T., P. H. Leslie, and D. B. Mertz. 1964. Genetic strains and com-
petition in populations of Tribolium. Physiological Zoology 37: 97-162.



328 Desharnais

Park, T., D. B. Mertz, W. Grodzinski, and T. Prus. 1965. Cannibalistic
predation in populations of flour beetles. Physiological Zoology 38:
289-321.

Rich, E. L. 1956. Egg cannibalism and fecundity in Tribolium. Ecology
37: 109-120.

Sharpe, F. R., and A. J. Lotka. 1911. A problem in age-distribution.
Philosophy Magazine 21: 435-438.

Sokoloff, A. 1972. The Biology of ‘Tribolium.’ Vol. 1. Oxford University
Press.

. 1974. The Biology of “Tribolium.’ Vol. 2. Oxford University Press.

. 1977. The Biology of ‘Tribolium.’ Vol. 3. Oxford University Press.

Stanley, J. 1932. A mathematical theory of the growth of populations
of the flour beetle, Tribolium confusum Duval. Canadian Journal of
Research 6: 632—-671.

von Foerster, H. 1959. Some remarks on changing populations. Pp. 382-
407 in F. Stohlman, ed., The Kinetics of Cellular Proliferation. Grune
& Stratton, New York.

Webb, G. F. 1985. Theory of Nonlinear Age-Dependent Population Dy-
namics. Marcel Dekker, New York.




