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Populations often exhibit abrupt changes in abundance associated with a smooth, continu- 
ous change in some component of their environment, with the abruptness usually attributed 
to inter-specific interactions or physical extremes. This paper presents a spatially explicit 
single-species population model in which intra-specific interactions alone are responsible for 
such an abrupt change. The essential mechanism involves cooperation in both colonization 
(through enhanced recruitment near other individuals) and mortality (protection through a 
"safety-in-numbers" interaction). Large fluctuations in population density would likely be 
observable near the transition region. 

1. Introduction. Abrupt changes in abundance or species composition are 
common occurrences: for example, changes in the dominant species across 
the marine intertidal zone (Lewis, 1964; Menge, 1976; Keddy, 1985; Nielsen, 
1987; Robles, 1987) or distribution of terrestrial plants with latitude and 
altitude (Noble, 1993; Slatyer and Noble, 1992). Many factors, including 
disturbance, predation, inter-specific competition and patchy recruitment 
(Dayton, 1971; Levin and Paine, 1974; Connell, 1975; Lubchenko and 
Menge, 1978; Marsh, 1986; Robles, 1987; Roughgarden et al., 1988; Sato 
and Iwasa, 1993), influence spatial heterogeneity in sessile communities. 
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Discontinuities in population density often correlate to abiotic boundaries, 
such as the correlation between ocean currents along the Western North 
American coast and the distribution of marine invertebrates (Efford, 1970). 
However, abrupt changes may also occur when organisms are distributed 
along smooth  environmental gradients, such as the variation of tempera- 
ture with altitude and latitude, atmospheric exposure time from the low 
tide line to the high tide line and toxicant concentration with distance from 
a point source. 

A key feature in a sedentary organism's localized environment is the 
distribution of surrounding con-specific individuals, which admits the possi- 
bility of cooperative interactions. For example, a high population density 
increases the survivorship of the ribbed mussel Geukensia dimissa over the 
winter (Bertness and Grosholz 1985). A number of mathematical models 
regarding well-mixed, spatially homogenous populations incorporating in- 
tra-specific, cooperative interactions (e.g. Noy-Meir, 1975; May, 1977) exist 
in the literature: the spruce budworm model (Ludwig et al., 1978) is a 
particularly well-known example. Certain parameter combinations in these 
models have two locally stable equilibria, and the long-term dynamics then 
depend on initial conditions. These models generally deal with mobile 
organisms, and mathematical derivations show that the consequence of 
diffusive movement is that for any given set of parameter values only one 
equilibrium is stable against large perturbations (Murray, 1989 and refer- 
ences therein). The proof is biologically instructive (see section 4). For 
example, think about a small patch of prairie in the midst of a forest, or 
vice versa, where both prairie and forest represent equilibrium states and 
diffusion represents seed dispersal. The proof considers movement of the 
interface separating these regions. There is a transition line (or hypersur- 
face) in the system's parameter space where the interface switches from 
advancing into one spatial region (prairie overtaking forest) to advancing 
into the other spatial region (forest invading prairie). An environmental 
spatial gradient induces variation in rates of migration, reproduction and 
mortality as individuals respond to their local environment. Gradients that 
cut across the transition line would produce an abrupt change in density (a 
sharp tree line). Thus instead of multiple equilibria, the system would 
exhibit properties that resemble phase transitions (e.g. solid to liquid, 
ordered to disordered) in physical or chemical systems. 

This paper shows that local cooperative interactions may lead to spatial 
density discontinuities in a single-species model of sedentary organisms. 
Our simplified general model was motivated by the population dynamics of 
marine mussels, yet the model is readily applicable to other biological 
systems. Mathematically, the model falls within the family of stochastic 
cellular automata (Wolfram, 1983), resembles "contact models" used exten- 
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sively in epidemiology and population genetics (Durrett, 1988) and shares 
features and the philosophy of the Ising model (Huang, 1987) in physics 
and chemistry. The latter is a mathematically accessible caricature of a 
phase transition that has helped identify common mechanisms in very 
different systems (ferromagnets, liquid-gas systems and binary alloys) by 
reinterpreting the Ising model's fundamental variables. 

Section 2 introduces the model interactions as applied to a system of 
marine mussels. Section 3 presents a zero-correlation, or mean-field, model 
representing these interactions and demonstrates that this non-spatial 
approximation exhibits multiple equilibria. Section 4 considers spatial pro- 
cesses, comparing approximate zero-correlation results with measurements 
from a spatially explicit simulation. Results of the two approaches agree 
qualitatively, but this section discusses several factors that account for 
quantitative differences. Section 5 illustrates that a smooth, environmental 
spatial gradient produces an abrupt transition in population density. 

2. Model Interactions. The model has general applicability to marine, 
aquatic or terrestrial systems of sedentary organisms, but this paper pre- 
sents it for mussel dynamics to avoid unnecessary abstraction and cumber- 
some prose. The hypothetical mussels live in an arena represented by a 
two-dimensional grid of "cells," each cell being approximately the size of 
one large adult mussel. A state variable denoting cell occupancy character- 
izes each cell, having value 1 if at least one mussel (of any age or size) is 
present, and zero otherwise. The model is stochastic, with four interactions 
determining the probability per unit time that any given site's occupancy 
changes its state (see Fig. 1): 

Open Recruitment. Local populations increase due to settlement of 
larvae from widely dispersed sources. Larval recruitment dynamics operate 
independently from local population dynamics, producing a constant influx 
of recruits. Open recruitment is a single-cell interaction: If a cell is 
unoccupied, it becomes occupied during a time interval At with probability 
/3 At, independent of its neighboring cells' states. Because cell occupancy is 
the state variable, recruitment to an already occupied cell has no effect in 
the model. 

Patch Mortality. Local populations decrease when an occupied cell 
becomes unoccupied during a time interval At with probability 6At. One 
mechanism leading to such a uniform removal is, for example, hydrody- 
namic lift (Denny, 1987; Denny et al., 1985; Paine and Levin, 1981). 
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Figure 1. The left-hand side shows the rules for the mussel model. Cell states 
are 1 if occupied and 0 if empty. The rules, from top to bottom, represent open 
recruitment, patch mortality, crowding and safety-in-numbers. The right-hand side 
lists the contribution each process makes to the "zero-correlation" approxima- 
tion of equation (1), where n is a cell's occupancy probability. 

Crowding. Much successful settlement occurs in the shelter of estab- 
lished individuals, yet open recruitment only influences unoccupied cells. 
Recruits in occupied sites experience strong intra-specific competition as 
they grow. Near the edge of mussel clusters individuals can escape this 
competition by moving into unoccupied space and setting down bysal 
threads. The resulting cluster growth is incorporated in the model by 
assuming that an empty cell is colonized by a given occupied nearest 
neighbor cell during a time interval At with probability J x A t .  

Safety-in-Numbers. The most complex interaction represents mortality 
due to drag forces induced on individual mussels by the repeated actions of 
waves rolling into mussel beds (Denny, 1987; Denny et al., 1985). Mussels 
on a cluster's edge, having less protection, experience higher drag forces 
than those located in the center. The model incorporates this feature by an 
occupied cell becoming empty during At with probability o-At if neigh- 
bored by three or four empty cells. A mussel neighbored by two 
or more mussels is safe from this mortality, hence the term "safety-in- 
numbers." This could also represent edge-specific predation. 

In spite of the model's conceptual simplicity, analytic methods cannot 
deduce its exact dynamics. Thus, this paper examines two approaches. The 
first is a straightforward computer simulation (see Appendix) incorporating 
spatial arenas with tens or hundreds of thousands of cells. If the "correla- 
tion length" (the effective range of correlated cell dynamics) is small 
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relative to the arena's size, simulations provide reliable estimates of exact 
dynamics of very large systems (e.g. Wilson and Vause, 1989). The second 
approach--the simplest analytic backdrop for simulation results--is a 
z e r o - c o r r e l a t i o n  (Gurney and Nisbet, 1978a, b) or mean-field (Huang, 1987) 
a p p r o x i m a t i o n ,  which neglects spatial correlations in cell occupancies. The 
paper then investigates how spatial interactions modify the zero-correlation 
results. 

3. Zero-Correlation Analysis. An exact analytic analysis accounts for 
stochasticity and variability at the scale of individual cells. The simpler 
zero-correlation approximation assumes there is no variability and that 
lattice cells are statistically identical and independent. Although this is a 
gross simplification, its attractive feature is its analytical approachability. 
The general prescription for deriving the zero-correlation model for the 
dynamics of a chosen cell state is to sum over all possible configurations-the 
product of each configuration's probability and its transition probability to 
the chosen cell state. The analysis performed here uses "occupied" as the 
chosen cell state and defines n ( t )  as the occupancy probability at time t ,  

equal to the fraction of occupied sites in a large system. The result is a first 
order differential equation with a contribution from each interaction de- 
scribed in the previous section (Fig. 1). Hence the contribution due to open 
recruitment is the probability of an unoccupied cell (1 - n )  multiplied by 
the transition rate /3. Similar reasoning yields the term for patch mortality. 
The crowding term is the probability of two neighbor sites being in opposite 
states n(1 - n) multiplied by the transition rate (1)X, summed over the four 
nearest neighbors, yielding x n ( 1  - n ) .  The safety-in-numbers interaction is 
the sum of the probability of an occupied site being surrounded by four 
empty sites n(1 - n )  4 and the probability of having just one neighbor (with 
four possible locations for the occupied cell) n (4n ) (1 -  n )  3, multiplied by 
the transition rate tr, yielding o-n(1 - n)3(3n + 1). These terms, with the 
appropriate signs, give the rate of change for the occupancy probability: 

dn 
=/3(1 - n )  - 6 n  + x n ( 1  - n )  - o-n(1 - n)3(3n + 1). 

d-7 
(1) 

The dynamical system defined by Equation (1) has equilibrium properties 
similar to those of many physical and biological systems possessing phase 
transitions (e.g. Schl6gl, 1972; Haken, 1983; Huang, 1987; Murray, 1989). 
Figure 2a illustrates these properties, showing that for some parameter 
values, Equation (1) has three positive equilibria, two of which, n L and nn,  
are locally stable to small perturbations. The middle equilibrium, n U, is 
locally unstable. However, the right-hand side of Equation (1) has three 
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Figure 2. (a) The zero-correlation colonization (light line) and mortality (heavy 
line) terms of equation (1) demonstrate the possibility of multiple equilibria (the 
intersections of the colonization and mortality curves). (b) The total population 
rate of change takes three basic shapes along a line through parameter space 
with constant equilibrium density n U. The middle curve marks a "critical point" 
on the surface that separates this model's parameter space into a region with 
one stable equilibrium and a region with two stable equilibria. 

general forms, shown in Fig. 2b. In one region of parameter  space, the 
single equilibrium n U is stable. In the remaining region, corresponding to 
the colonization and mortality curves shown in Fig. 2a, there are the three 
equilibrium points discussed above, with the intermediate equilibrium n U 
being unstable. Systems with initial densities less than n U evolve to the 
lower equilibrium n L and, likewise, systems with initial densities greater 
than n U evolve to the upper equilibrium n H ,  implying that initial condi- 
tions determine the long-term population densities. The combination of 
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parameter values used to generate the middle curve in Fig. 2b marks a 
"critical point" in parameter space (Huang, 1987). 

4. Implications of Space. Section 1 noted that previous studies have 
established that asymptotic dynamics of single-species models with multiple 
equilibria and diffusion are independent of initial conditions (Murray, 
1989). Simple diffusion added onto a zero-correlation model yields a partial 
differential equation of the form 

On 02n 
Ot - g ( n )  + D  dx  2 , (2) 

where n(x ,  t) is the occupancy probability at location x and time t, and D 
is the diffusion coefficient. The function g(n )  describes local birth and 
death processes having the properties shown in Fig. 2b. Murray's (1989) 
proof continues with the assumption of an initial configuration in which the 
origin x = 0 represents a boundary separating high- and low-density equi- 
librium regions. The question is then whether this boundary moves in the 
positive direction, negative direction or stays motionless at the origin. The 
direction of boundary movement determines the dominant phase and, after 
some analysis, gives the condition 

> 0, high-density phase invades low density phase, 
= 0, motionless boundary, 
< 0, low-density phase invades high density phase. 

(3) 

Figure 2b represents the integral (3) as the sum of the "negative" area (the 
integral from n L to n v) and the "positive" area (the integral from n v to 
nn). The point along a line in parameter space where these two areas are 
equal marks a transition between the phases n L and n n. This equal-area 
construction has been in use for over a century in phase transition models 
of physical systems (see Klein, 1974, who cites Maxwell, 1875, for the first 
derivation). 

Figure 3 compares results from the zero-correlation model and the 
spatial simulation. The zero-correlation plot (Fig. 3a) only shows the 
dominant equilibrium, chosen by the equal-area construction, in regions of 
multiple equilibria. Figure 3b presents equilibrium densities measured from 
a spatially explicit simulation (see Appendix). Both cases fix the recruitment 
rate /3 and patch mortality rate 6 while varying the crowding rate X and 
safety-in-numbers rate o-. Predictions from the zero-correlation approxi- 
mation and equal-area construction provide a qualitative match to the sim- 
ulation results. Clearly there is significant quantitative disagreement, 
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Figure 3. (a) Equilibrium mussel density n determined from equation (1) and 
the equal-area construction (3) as a function of crowding rate X and drag rate cr 
with recruitment rate /3 = 0.001 and patch mortality rate 8 = 0.05. (b) Results 
from a spatial simulation using a 1282 lattice. Zero-correlation and simulation 
results agree qualitatively, in spite of clear quantitative differences. 

particularly in the sharpness and location of the boundary between low and 
high population densities and in the precise location of the critical point, 
that stepping beyond a mean-field approximation to a pair approximation 
would partly alleviate (Matsuda et al. 1992; Harada and Iwasa, 1994). 
However, several issues remain when accounting for this quantitative 
mismatch: two surround assumptions regarding derivation of the equal-area 
construction, and others involve general properties of phase transitions. 
The remainder of this section addresses each in turn. The quantitative 
effect due to each of these remains unclear. 
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Local Mixing. Propagation of a phase boundary requires a degree of 
local mixing or interactions that allow neighboring regions in different 
equilibrium phases to affect each other. Murray's equal-area construction 
uses simple density-independent diffusion to provide local mixing, but the 
simulation model of sessile organisms has no explicit diffusion, relying 
instead on interaction terms, with cell transitions dependent on neighboring 
cell states, to propagate the phase boundary. Non-linear effects due to the 
safety-in-numbers interaction further complicate applicability of analytic 
results assuming simple diffusion. This interaction involves many neighbors, 
and the analytic counterpart is a density-dependent diffusion term along 
with the simple diffusion used in Murray's analysis. Such an addition might 
just replace the simple equal-area construction (3) with a more complicated 
condition yet retain the important feature that one phase or the other 
dominates at each point in parameter space. If this argument is correct, the 
non-linearity present in the simulations would produce a phase transition 
boundary at a location different from that predicted by the equal-area 
construction. 

Metastability. Applicability of the equal-area construction also relies on 
a subtler assumption. Consider a system of mussels represented by the 
mussel model with parameter values having a dominant low-density equilib- 
rium. Open recruitment ensures that there will be a low mussel density 
everywhere in a uniform habitat. Now imagine slowly changing a parameter 
just enough to cross the discontinuous phase transition line such that the 
high-density equilibrium becomes dominant. The entire system remains in 
the low-density phase while crossing the line; hence the system is now 
metastable. Before the dominant phase takes hold, a "small" region of the 
high-density phase must appear spontaneously. The macroscopic times 
required for the appearance of a spontaneous, large perturbation leads to 
many interesting features in phase transitions, such as hysteresis, or super- 
heating and super-cooling. The equal-area condition (3) determines the 
dominant phase by calculating which way the boundary moves and makes 
no explicit predictions about these times. Simulation results, however, show 
that a single mussel occasionally becomes a "keystone individual," repre- 
senting a very localized region of high-density phase, that begets the 
high-density equilibrium. This, coupled with open recruitment, infers that 
adequate local perturbations are always present in the system, and the most 
important question involves which phase dominates. 

Divergent Properties. Finally, we have observed, but not presented, that 
the mussel model's critical point exhibits many of the same features 
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observed near critical points of common physical phase transition models. 
Particularly, both the relaxation time (the time needed to achieve steady 
state) and the correlation length (the distance over which local perturba- 
tions have an influence) diverge at the critical point (Huang, 1987; Wilson 
and Vause, 1989). The implications for simulation studies are two-fold. 
First, long relaxation times require long transient periods, and thus more 
computing effort, before making measurements of steady-state properties. 
Second, long correlation lengths require large lattices: Near the critical 
point a "small" lattice's edges influence the system and the simulation no 
longer approximates an infinite system. In these situations simulation 
results are unreliable. The issue is not one of quantitative agreement 
between mean-field and simulation results, rather recognition that both are 
poor approximations of an infinite system's true steady-state solution. 
Generally, if steady-state results are the goal, then critical points present 
a problem, but if transient phenomena are also interesting (Hastings 
and Higgins, 1994), then critical points in biological systems could be 
fascinating. 

5. Dynamics along a Smooth Environmental Gradient. Smooth spatial 
variation of some environmental feature may produce a proportionate 
variation in one or more of the biological interactions represented by the 
model parameters. For example, a gradient in wave action would mean a 
parameter gradient in the "safety-in-numbers" term. Figure 3 suggests that 
sharp changes in population density should be anticipated along a smooth 
environmental gradient that crosses the phase transition. The simulation 
model demonstrates this phenomenon when the parameter tr increases 
linearly with position (Fig. 4). The transition in mean patch occupancy i s  
smooth away from the discontinuity (Fig. 4a), but is rather sharp when the 
discontinuity is crossed (Fig. 4b). Similar results can be obtained with other 
parameter gradients, such as the crowding rate X, which might arise in the 
vicinity of a point source of a toxicant. 

6. Discussion. The main conclusion from this paper is that abrupt changes 
in density of sedentary organisms may be a response to slow temporal or 
spatial variation in intra-specific interactions alone. The key model features 
leading to this conclusion are cooperative interactions influencing both 
recruitment and loss rates. While many abrupt changes in densities result 
from inter-specific interactions and /o r  spatial heterogeneity, for example, a 
simple change in predator density (Hughes, 1994) or physiological con- 
straints (Paine and Levin, 1981), results presented here establish that 
intra-specific cooperative interactions produce similar effects. This observa- 
tion may lead to a resolution in cases where no external causes for abrupt 
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Figure 4. (a), (b) Spatial simulation snapshots of a 400 x 128 lattice. A black dot 
signifies occupancy. Both images use fl = 0.001 and 6 = 0.05. (a) X = 0.16 and 
uniform wave intensity gradient with tr = 0.05 on the left edge and tr = 0.15 on 
the right edge. The  populat ion density varies smoothly. (b) X = 0.3 and uniform 
wave intensity gradient with tr = 0.44 on the left edge and tr = 0.54 on the right 
edge. The populat ion density changes abruptly in the middle of the image. 
(c) Density profiles along the gradient reflect these variations. 

density changes are apparent. On the transition boundary, but well away 
from the critical point, the system should spend most of its time in the 
dominant low- or high-density phase, but the occasional environmental 
fluctuation could take the system into the other phase for transient times 
(e.g. Nisbet and Onyiah, 1994). Long response times and patchiness on all 
spatial scales would characterize systems situated near the critical point in 
parameter space (Fig. 2). 

There are many other causes of patchiness unrelated to cooperative 
interactions. Previous studies of other spatially explicit models demonstrate 
a correlation length ~: Below this scale, populations behave much like a 
homogenous population, but above this scale, population fluctuations are 
uncorrelated (e.g. de Roos et al., 1991; McCauley et al., 1993). It is 
reasonable to interpret ~, set by model interactions, as the characteristic 
patch size for such systems, but as yet there is no recipe for estimating its 
magnitude in any real system. While the mussel model exhibits "large 
patches" and "long transients" near the critical point, definitions of "large" 
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or "long" depend on system-specific details and are notoriously difficult to 
obtain quantitatively. There is also no prescription to distinguish critical 
fluctuations from correlated phenomena found in models with simpler 
dynamics. 

Many different sets of biological assumptions lead to multiple equilibria 
models similar to the foregoing model (Noy-Meir, 1975; May, 1977; Harada 
and Iwasa 1994). Indeed, an equivalent dynamical model having a different 
biological interpretation arises from a quirk of occupancy models: The 
dynamics of occupied cells reflect the dynamics of u n o c c u p i e d  cells. The 
equilibrium n L in Fig. 2b represents both a low density of occupied cells 
and a high density of unoccupied cells. In this spirit, the simulation pictures 
in Fig. 4 could instead show unoccupied cells as dark pixels, transforming 
the white areas into dark areas and vice versa. Defining a variable m = 1 - n, 
one avoids imagining the dynamics of nothing by letting m = 1 represent 
t he  presence of a "hole" (Wilson and Laidlaw, 1992). The newly trans- 
formed dark areas represent regions of high hole density (m = 1). A simple 
transformation of the density axes in Figs. 2-4 also provides the quantita- 
tive dynamics of the variable m. If the holes represent a new organism (and 
empty holes contain nothing), what would be that organism's biological 
features? The zero-correlation model for hole dynamics arises from equa- 
tion (1) upon substitution of n = 1 - m ,  and this new model's interaction 
terms describe the biological features. The resulting dynamical model is 

d m  

dt  
/3'rn + 6'(1 - m )  - x ' m ( 1  - m )  + o-'(1 - m)m3(4 - 3m), (4) 

with primes attached to this new model's parameters. The important point 
is that model (4) is mathematically equivalent to model (1), but describes a 
different biological scenario. The first two terms represent patch mortality 
and open recruitment, as in the mussel model (1), but with the two 
parameters' roles reversed. The third term represents a mortality function 
in which organisms risk death for each empty neighbor site. This is 
somewhat similar to the safety-in-numbers idea, except here the "safety" is 
directly proportional to the number of neighbors present. The last term 
represents cooperative recruitment to empty sites surrounded by three or 
four occupied neighbor sites. Such a term could represent the protection of 
offspring by adults in high-density regions. Hence, occupancy models both 
explore the implications of specific biological processes and provide connec- 
tions between biological systems having distinct processes. 

These results also have implications concerning the role of competition 
in determining community structure, since, in natural communities, inter- 
specific competition is likely to occur alongside intra-specific interactions. 
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Much insight, particularly on competitive hierarchies and species zonation, 
has come through experimental manipulations involving controlled exclu- 
sion of other factors such as predation (e.g. Dayton, 1971; Lubchenko and 
Menge, 1978; Robles, 1994). If enhanced cooperation reduces predation, 
this paper demonstrates that population changes in such manipulations 
may be indirectly related to intra-specific cooperative interactions. The 
presence of vulnerable prey at particular locations within a community may 
not indicate the absence of predator foraging, but rather the effectiveness 
of cooperation at those locations. Also, competitors might serve as unwit- 
ting cooperators, for example, when young mussels indiscriminately recruit 
to surface irregularities, perhaps the roots of macroalgae, the bysal threads 
on an existing mussel patch or substrate heterogeneities, seeking protection 
from predators or hydrodynamic drag. All these aspects indicate that sharp 
transitions in dominant species along environmental gradients may result 
from subtly combined effects of inter-specific competition and intra-specific 
cooperation (Wilson and Nisbet, 1996). 

Predictive modeling may target the location of discontinuities on envi- 
ronmental gradients as a particularly sensitive indicator of environmental 
change. The preceding work began after finding an unexpectedly high 
sensitivity to environmental change in a very detailed model of mussel 
population dynamics (Wilson, Nisbet and Ross, unpublished research), and 
suggests that a high priority for future research should be relating phase 
transition behavior to interactions among individuals. Useful predictions 
regarding environmental change in specific systems may arise by linking 
spatial features to individual-based population models in toxicology (e.g. 
Kooijman, 1993 and references therein; Nisbet et al., 1995; Kooijman and 
Bedeaux, 1995). 

We thank J. Connell, A. M. DeRoos, L. Goldwasser, W. S. C. Gurney, 
W. G. Laidlaw, S. A. Levin, E. McCauley, W. W. Murdoch, J. Overton and 
R. J. Schmitt for discussions and advice. This research was supported by the 
US Office of Naval Research (Grant No. N00014-93-10952). 

APPENDIX 

This appendix provides details regarding the simulation used in Figs. 3b and 4. The 
simulation uses discrete time steps and discrete cells to approximate continuous time and 
space. Each cell contains an occupancy variable having states 0 or 1, denoting unoccupied or 
occupied, respectively. Figure 1 depicts the rules defining the transitions between cell states 
that occur during a time step. Each rule displays the initial configuration on the left, the 
final configuration on the right, and the transition probability above the arrow. 
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The arrangement of cells is an L • M square lattice partitioned, like a checkerboard, into 
two sublattices A and B. Cell transitions are either site-specific or dependent on nearest 
neighbor cells' states (see section 2) which allows simultaneous updating of all A cells 
during a time step, and subsequently all B cells, without introducing spurious update order 
effects. 

The C code representing a cell state update precisely defines the simulation rules. Letting 
"origin" be a pointer to a lattice site, "state" be its occupancy variable and "nabes" be an 
array of pointers to origin's neighbor cells, the cell updating code is a single C statement: 

if(origin ~ state = = 0) 
{ 

if(drand48( ) < beta) origin ~ state = 1; / *  uniform recruitment * /  
else if(drand48( ) <  chi) / *  crowding * /  
{ 

dir = (int)4*drand48(); 
origin ~ state = origin --* nabes[dir] ~ state; 

} 
} 
else 
{ 

if(drand48( ) > delta) origin --, state = 0; 
else 
{ 

} 
} 

/ *  patch mortality * /  
/ *  safety-in-numbers * /  

nncnt = 0; 
for(j = 0; j < 4; j+  + ) if(origin ~ nabes[j] ~ state = = 1) nncnt+ + ; 
if(nncnt < = 1 && drand48( ) < sigma) origin ~ state = 0; 

where "drand48( )" is a system supplied random number generator. The time step defines 
unit time At = 1, so does not enter explicitly. The values of /3 and 6 are small enough so 
that interaction ordering within a time step poses no problems. Although X and or may be 
relatively large, their interactions occur for mutually exclusive cell states, again avoiding 
updating problems. There are two coding options for crowding events to match the 
zero-correlation model: (1) Examine all four neighbors, each "crowding" with probability 
X/4 ,  or (2) examine one randomly chosen neighbor crowding with probability X. The latter 
case examines each neighbor, on average, every fourth time step. Neither option exactly 
matches the zero-correlation model since both avoid multiple crowding events in which two 
or more neighbors crowd into the same cell. The above code uses the latter option to reduce 
random number generation. 

In Fig. 3b, the lattice used periodic boundary conditions where cells on the left edge 
neighbor cells on the right edge, and similarly for top and bottom edges. Simulation results 
were insensitive to initial conditions (initial cell occupancy probability). Determination of 
the surface of Fig. 3b used two sets of simulation runs. An initial examination measured 
each mussel density over 1000 time steps after discarding the first 1500 time steps to allow 
relaxation of transients. Transients decayed very slowly in the region of parameter space 
surrounding the phase transition line, so longer runs in this region used 20,000 relaxation 
steps and 5000 measurement steps. Results at the boundaries between the short and long 
runs agree. 

In Fig. 4, the lattice used boundary conditions where cells on the left edge connected to a 
fully occupied boundary and cells on the right, top and bottom edges connected to empty 
boundaries. These boundaries mimic low and high wave intensities on the left and right 
edges, respectively, and physiological constraints of the intertidal zone at the top and bottom 
edges. Simulations began with each cell having an 80% occupancy probability. Measure- 
ments in Fig. 4c used 20,000 relaxation steps and 5000 measurement steps. 
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