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 In an effort to improve upon deterministic ecological theory, there has been
 interest in stochastic models of population growth (e.g., Bartlett 1960; Pielou
 1969, 1977; May 1973, 1974; Ludwig 1974; Keiding 1975). This approach is more
 realistic in that one obtains a probability distribution for population size rather
 than a single deterministic equilibrium value. One method of incorporating
 stochasticity into a deterministic model is to assume random fluctuations in one
 or more of the biological parameters of the model. Costantino and Desharnais
 (1981) used this stochastic differential equation formulation to derive a gamma
 steady-state probability distribution for adult numbers in laboratory populations
 of flour beetles belonging to the genus Tribolium. They examined 13 observed
 frequency distributions of adult numbers for T. castaneum Herbst and T. con-

 fusum Duval and found that the data supported the gamma steady-state hypothe-
 sis.

 Our perspective here is to characterize population growth as a stochastic
 birth-death process involving the rates of pupal production, adult mortality, and
 adult inhibition of the immature life stages. Our objectives are to describe (1) the
 approach of adult numbers to equilibrium, and (2) the steady-state probability
 distribution of adult numbers. We begin by presenting the deterministic popula-
 tion dynamic model, followed by the stochastic birth-death model and then apply
 this theoretical construct to data on T. brevicornis.

 TRIBOLIUM POPULATION MODEL

 Deterministic Model

 Crombie (1946, p. 99) characterized the rate of population growth in Tribolium
 as "determined almost entirely by the rates of oviposition and of development on
 the one hand, and by the rates of cannibalism on the other.... The eating of eggs
 and pupae probably takes place after random encounters between feeding stages
 (adults and larvae) and prey stages (eggs and pupae). The relationship between

 Am. Nat. 1982. Vol. 119, pp. 102-111.
 ? 1982 by The University of Chicago. 0003-0147/82/1901-0002$02.00. All rights reserved.

 102

This content downloaded from 130.182.24.103 on Thu, 18 Apr 2019 22:11:48 UTC
All use subject to https://about.jstor.org/terms



 EQUILIBRIUM IN T. BREVICORNIS 103

 the stages would then be analogous to a second order chemical reaction." With
 this statement, Crombie (1946) wrote the differential equation

 dX/dt = -XCA. (1)

 The change in the number of eggs or pupae (recruits) is a function of the can-
 nibalism rate of adults (C), the number of adults (A), and the number of eggs or
 pupae produced (X). We can integrate (1) to obtain the number of eggs or pupae at
 time t in the presence of A adults as

 X = Xoexp(-CAt). (2)

 Statement (2) is central to several mathematical models of population growth in
 Tribolium including Neyman et al. (1956), Rich (1956), Bartlett (1957), Mertz and
 Davies (1968), Lloyd (1968), Park et al. (1970), Desharnais and Costantino (1980),
 and Costantino and Desharnais (1981).

 We shall direct our attention to a Ricker-type model (Ricker 1954) that attempts
 to explain the changes in the size of the adult beetle population based on the
 association between the number of adults and the number of the progeny pro-
 duced by these adults. The density-dependent regulation stated in equation (2) is
 an important aspect of this kind of model. To begin, we let C be the probability
 that a single adult prevents a potential recruit from entering the adult population in
 some small time interval (t, t + At). Assuming that the adult beetles act inde-
 pendently, the proportion of potential recruits that become adults during (t, t +
 At) will be (1 - C)A exp(-CA) for small C. Defining X as the rate at which
 potential recruits are produced per adult and D as the adult mortality rate, we can
 describe the change in adult numbers during (t, t + At) as

 A (t + At) -A (t) = At A (t) X e-CA t) - At A(t) D. (3)

 Dividing through by At and taking the limit as At goes to zero we have

 dA (t )ldt = A (t ) X e-'CA ' O'- A (t ) D (4)

 as our model. The rate of recruitment, R (A) = X A e -C'A, and the rate of mortality,
 M(A) = D A, are plotted as functions of adult number in figure 1. This model has
 also been discussed, for example, in fisheries biology by Ricker (1954, 1975) and in
 general population studies by Moran (1950), May (1974b), Smith (1974), Hop-
 pensteadt (1975), Hunt (1980), Fisher et al. (1979), and Cull (1981).

 When the rate of recruitment is equal to the rate of mortality, a single nontrivial
 equilibrium exists at A* = log(X/D)/C. If the partial derivative X = a(dAldt)1aA
 evaluated at A = A * is negative, then small disturbances in adult numbers from A *
 dissipate with time and the population returns to its equilibrium number. In our
 case, X = D log(D/X) and if X > D then X < 0 and the equilibrium is locally stable.
 The amount of time it takes for a perturbation to decay is generally described by T

 = 1/ I X I called the "time constant" of the stable equilibrium. The entity r is the
 amount of time required for a perturbation to decay to 37% (e-l) of its original
 value. This time is independent of the magnitude of the perturbation.
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 FIG. 1.-A model for the number of adults based on equation (4). The rate of recruitment is

 R(A) = X A exp(-CA) and the mortality rate is M(A) = A D. The parameter values were

 obtained from data on Tribolium brevicornis: X = 0.413, D = 0.247, and C = 0.002485. RL(A)

 is a linear approximation of R (A) in the vicinity of A* = 207. The small inserted figure in the

 upper right shows that RL(A) is a good approximation for these data in the neighborhood of

 A*.

 Birth-Death Process

 We shall now move from the deterministic model of equation (4) and consider
 changes in adult numbers as a stochastic "birth-death" process. By choosing an
 infinitesimal time interval At, we can let R (A) At and M (A) At represent, respec-
 tively, the probabilities that a single recruitment and a single mortality will occur
 during (t, t + At) when A adults are present at time t. Furthermore, we can assume
 that the probabilities of two or more recruitments and/or mortalities are negligible.

 Under these assumptions, the probability of finding A adults at time t + At is

 PA(t + At) = PA(t) [1 - R(A) At - M(A) At] (5)
 + PAl(t) R(A - 1) At + PA+l(t) M(A + 1) At.

 Bringing PA (t) to the left-hand side, dividing by At and taking the limit as At goes
 to zero gives

 dPA(t)/dt = -[R(A) + M(A)] PA(t) + R(A - 1) PAl(t) (6)
 + M(A + 1) PA+l(t)

 for A = 0, 1, 2, . This system of equations is known as the Chapman-
 Kolmogorov differential equations and their derivation appears in many texts in
 various degrees of sophistication (e.g., Bhat 1972; Karlin and Taylor 1975).
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 EQUILIBRIUM IN T. BREVICORNIS 105

 Approach to equilibrium. -We will use equation (6) to derive the mean and
 variance of adult numbers as functions of time. We begin by using a linear ap-
 proximation RL(A), for recruitment in the vicinity of A* (fig. 1),

 RL(A) = R (A *) + (A - A*) [R (A)/8A]A=A** (7)

 To find the change in the mean of adult numbers, A (t), we multiply both sides of
 equation (6) by A and sum the equations for A 0 to A = oo. This gives

 dA (t)/dt = G [A* - A (t)] (8)

 where

 G = [OM(A)/8A - OR(A)/8A]A=A* = D log(X/D). (9)

 Notice that (8) is an approximation of (4). Multiplying both sides of equation (6) by
 [A - A (t )]2 and summing gives

 dV(t)/dt = -2GV(t) + RL[A(t)] + M[A(t)]. (10)

 The differential equations (8) and (10) are identical to the results obtained by
 MacArthur and Wilson (1967 pp. 33-41) for the number of species colonizing an

 island.

 Solving for the mean number of adults we have

 A(t) = A* (1 - e-Gt) ( 1)

 and as t > co, A(t) - A* = log(X/D)/C. Furthermore, we can compute the time
 required to reach 95% of the equilibrium value A* by setting A(t)/A* = 0.95 so that

 to.95 = 2.9957/G. (12)

 Solving for the variance of adult numbers we have

 V(t) = (1/C) (1 - 2eGt + e-2Gt) + A (t)e-Gt (13)

 and as t -- oo the variance at equilibrium is

 V* = 1/C. (14)

 Steady-state probability distribution.-The numbers of adults will, asymptoti-
 cally, assume a constant mean and variance. Given this fact, it is reasonable to
 postulate the existence of a stationary distribution of adult numbers. If we assume

 dPA/dt = 0 for all values of A, then from equation (6) we have
 A

 PA = Po0 H R(J - 1)/M(J). (15)
 J= 1

 To convert the deterministic model (4) into a probabilistic one, we redefine
 recruitment as R (A) = X (A + 1) e . With this slight but important modification,
 A = 0 does not act as an "absorbing state." If an absorbing state did exist the
 probability of extinction is unity and no steady-state distribution is realized (Bhat
 1972). We shall return to this item in the next section. Now, using equation (15) we
 have the following equilibrium probability distribution for adult numbers:

 PA = K (X/D )A exp[(-C/2) A (A - 1)]. (16)
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 K, which equals P0, is the normalization constant which makes the total probabil-

 ity equal unity. It can be shown (Appendix A) that the mean and variance for this
 distribution are

 A = A* + 1/2 + K/C-A* + 1/2 (17)

 and

 V = (1/C) (1-K A)-1/C. (18)

 In most cases K will be very small and the approximations will hold. Although
 different assumptions were made concerning the recruitment function, these re-
 sults agree well with those of the previous section. If the density function (16) is

 expressed in terms of the approximate mean (17) and variance (18), then

 P4 = (2ir7V)" 1/2 exp[-(A - A)2/2V]. (19)

 The density (19) is the familiar normal distribution which yields the estimate

 K = [exp(-A2/2V)]/(2ITV)"X2 (20)

 for that constant in equations (16), (17), and (18).

 EXPERIMENTAL OBSERVATIONS AND DISCUSSION

 In this study, we wrote the probability PA (t + At) of findingA adults at time t +
 At (eq. 5) and then obtained the mean number of adult beetles at time t, the

 variance in this number, and finally the steady-state probability distribution of
 adult numbers. We shall now consider some experimental data as a means of
 discussing this model.

 Four cultures of the flour beetle Tribolium brevicornis were maintained with

 overlapping generations for 72 wk. Each culture was initiated with 20 young adults
 and kept in a one-half pint bottle with 20 g of standard media (percentage compo-
 sition: 95% wheat flour and 5% dried brewer's yeast) and held in an unlighted
 incubator at 33 + 1? C and 60 + 5% relative humidity. All life stages (except eggs)
 were counted every 2 wk and following the census the animals were placed in
 fresh media. The observed number of adults are presented in figure 2. Since each

 culture was started with adults only, time was rescaled so as to omit the initial 4

 wk when pupae were unavailable for recruitment; consequently, t = 1 corre-
 sponds to week 6 and one time unit equals 2 wk.

 The values of A * and G of equation (11) were estimated using a general method
 for fitting nonlinear regression which is described in Appendix B. Least-squares
 estimates and approximate standard errors of A* = 207.0 + 4.2 and 6 = 0.127 +
 0.009 were obtained from a regression on the means of adult numbers. The
 regression equation

 A(t) = 207[1 - exp(-0.127t)]

 is a good fit (R2 = 0.86) to the observed numbers of adult beetles (fig. 2).
 An estimate of the variance in the vicinity of the equilibrium, V* = 402.48, was

 computed from the adult data for t - 24 (n = 44 observations) because at this time
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 per capita adult mortality rate was obtained by rearranging (9) to read D =

 G/(C~*) = 0.247 per time unit (2 wk). Finally, an estimate of the rate at which
 potential recruits are produced per adult per time unit was computed from the
 equation X = D exp (CA *) = 0.413.

 The number of new adults, R (A), is given by the product of the number of

 potential recruits produced per adult times the number of adults times a negative

 exponential function that describes the proportion of potential recruits that be-

 come adults. In these data, R(A) = (0.413A) exp(-0.002485A) which is sketched
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 108 THE AMERICAN NATURALIST

 in figure 1. To locate a maximum, R (A) is differentiated with respect to A and
 equated to zero: dR(A)/dA = Xexp(-CA) [1 - CA] = 0. The value of A which

 makes R (A) a maximum is 1/C. Recall from (14) that the variance at equilibrium is
 V* = 1/C; consequently, when the adult population size A = V*, recruitment is a
 maximum. For these data on T. brevicornis, A* = 207 < V* = 402 and we
 conclude that R (A) is not maximized.

 The eigenvalue was computed using (9) to be A = = -0.127. Thus, Ai is
 locally stable and from inspection of figure 1 it is clear that the equilibrium is
 globally stable. The amount of time required for a perturbation to decay 37% of its

 original value is Ir= 1/ I X I = 7.87 time units or 15.7 wk. Since we used a linear
 approximation for A (t) the time constant is also appropriate to predict the ap-
 proach to equilibrium. In other words, it was expected to take 3T = 23.6 time units
 or 47.1 wk for A (t) to reach within 5% of A-,-. This statement is similar to equation
 (12).

 The expected steady-state probability distribution of adult numbers was ob-
 tained using equation (16) with A = 207 and V* = 402.48 as

 P(A) = (1.20 x 10-25) (1.672)A exp[(-1.242 x l0-) A (A - 1)].

 The hypothesis that the observed grouped frequency data (histogram in fig. 2) is
 distributed according to the density in (16) was accepted using a chi-square test for
 goodness-of-fit at the .05 level of probability with 2 degrees of freedom.

 To obtain a steady-state probability distribution (16), it was necessary to modify
 recruitment as R (A) = X (A + 1) exp(-C A). Otherwise, if recruitment is defined
 as in equation (4), R(O) = 0 and from (15) it can be seen that no steady-state
 probability distribution exists. Furthermore, using a theorem from Karlin and
 Taylor (1975, p. 149), we can show that the probability of extinction always equals
 one. However, if initially there are A adults, the mean time to extinction, TE(A), is

 TE(A) = (1D) > (X/D)i (i + 1)-i exp[-(C/2) i (i + 1)]

 A-1x

 + (lID) E E~ (j)-1 (X/D)j-"' exp{-(C/2) i (l - 1) - r (r - 1)]}.

 (This expression was obtained using eq. 7.10 from p. 149 of Karlin and Taylor
 1975.) Using our estimated values for X, D, and C and noting that each population
 of T. brevicornis was started with 20 adults, we have calculated the mean time to
 extinction to be 2.38 x 1023 time units which is 9.13 x 1021 years! Although
 extinction is certain, it is unlikely to be observed unless there are changes in the
 parameters of the system. Thus it is reasonable to assume the existence of a
 steady-state probability distribution.

 The characterization of population growth as a Markov birth-death process
 appears to appropriate for T. brevicornis. This species differs from T. castaneum
 and T. confusum in that adults of this species delay the metamorphosis of large
 larvae into pupae, thus controlling recruitment into the adult population (Jillson
 and Costantino 1980). Consequently, a large pool of potential recruits (large
 larvae) is established and fluctuations in the number of potential recruits and dead
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 EQUILIBRIUM IN T. BREVICORNIS 109

 adults are small. This is in contrast to T. castaneum and T. confusum which

 control recruitment into the adult population by cannibalizing pupae. These can-
 nibalizing species show large fluctuations in bothX and D and are, perhaps, more
 appropriately studied using the stochastic differential equation formulation (Cos-
 tantino and Desharnais 1981).

 SUMMARY

 The rate of population growth in adult numbers, A, for the flour beetle Tribolium

 was characterized by the mathematical model dA/dt = X A exp(-CA) - A D with
 the biological entities pupal productivity, X, adult inhibition of the immature life
 stages, C, and the death rate among the adults, D. A local stability analysis of the

 equilibrium A* = log(X/D)/C revealed that the eigenvalue X = D log(D/X) and A"
 was stable if X > D. The time it takes for a perturbation to decay was evaluated

 using the time constant T = 1/ I X I .
 The changes in adult numbers were then viewed as a stochastic birth-death

 process. The numbers of adults were found to asymptotically assume a constant
 mean value of A(t) = A* = log(X/D)/C and a constant variance of V(t) = V* =
 1/C. Equations were established for the approach of A (t) and V(t) to their
 respective equilibrium values together with the steady-state probability distribu-
 tion of adult numbers. Formulas to estimate A *, X, D, C, and X were obtained

 based on the adult population size data. Experimental observations on T. bre-
 vicornis showed a good correspondence to the theoretical construct.

 APPENDIX A

 Here we derive expressions for the expected mean and variance of adult numbers at the
 steady state. Consider the following continuous version of the equilibrium probability
 distribution (16):

 P(A) = K (X/D)4 exp[-(C/2) A (A - 1)] (Al)

 for A : 0. Taking the derivative of (Al) with respect to A, we obtain the following:

 dP(A)/dA = P(A) [log(X/D) + (C2) - (C A)]. (A2)

 Integrating (A2) with respect to A from zero to infinity we get

 P(c) - P(O) = [log(X/D) + (C/2)] f P(A )dA - C f A P(A )dA. (A3)

 Noting that limA>> P (A) = 0, P (O) = K, f P (A)clA = 1, f A P (A)dA = E (A) = A, and

 log(X/D)/C = A, we can rearrange (A3) to get expression (17) for the expected mean
 number of adults.

 To obtain the variance, we multiply equation (A2) by A before integrating. This gives us

 AdP(A) = [log(X/D) + ((/2)] f A P(A)dA - C f A2P(A )dA. (A4)

 Integrating the left-hand side of (A4) by parts we get

 AdP(A) = [A P(A)]Y~o- f P(A)dA = lim [A P(A)] - 1. (A5)
 A O A--
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 Since P(A) has a finite expectation, E(A), we know that the limit in (A5) converges to zero.
 Substituting (A5) into (A4) and rearranging we have

 00

 f A2P(A)dA = E(A2) = (A * + 1/2) A + 1/C (A6)

 which can be used to compute the variance

 V = E(A2) - [E(A)]2 = (1/C) (1 - K A). (A7)

 APPENDIX B

 Here we show how we obtained the least-squares estimates and the approximate
 standard errors for A i and G of equation (11). We used the general method for fitting
 nonlinear regressions described in Snedecor and Cochran (1967, pp. 465-471). Let

 f(A *, G, t) = A [1 - exp(-Gt)].

 Our statistical model is

 A t = f(A;", G. t) + Et (B 1)

 where At is the mean number of adults observed at time t. The residual error terms, Et, are
 assumed to be independently identically distributed with a zero mean and variance 2.
 Although this standard statistical supposition is not consistent with equation (13), there is
 no trend in the variances of the observed data to justify an abandonment of this simplifying
 assumption.

 In order to apply least squares regression we linearized our model. Let g be a first
 approximation to G. By Taylor's theorem

 f(A*,G,t) = f(A ,g,t) + E (G - g)k1l/k!)(ahflaGk)Gq=g (B2)
 k=i

 If g is a good approximation to G, we can drop the higher order terms of the series to get

 A,-A (1 - e-t) + A (G - g)(te --t) + Et. (B3)

 Making the transformations Yt = 1 - exp(-gt) and Zt = t exp(-gt) we get the following
 linear statistical model with no intercept:

 At u-- Yt + bZt + Et (B4)

 where (1 = A: and b = A' (G - g).
 We performed a standard multiple regression on equation (B4) to obtain estimates for A

 = i and G = g + 1916. An estimate of the residual variance was given by 6r2 = , [A, -
 f(A: -,Gt)]21(l - 2), where 11 is the number of observations (n = 34). Since the accuracy of
 these results depends on the initial estimate g, we let g = C and repeatedly applied the
 procedure until (&2 converged to a minimum of 140.2. Our final regression gave us least-
 squares estimates of A 207.0 ? 4.2 and C = 0.127 ? 0.009. The standard errors of these
 estimates were calculated in the usual way using 6v2 and the inverse of the matrix of sums of
 squares and products of the transformed variables Y, and Z,. However, these results are
 only approximate, since &2 is not an unbiased estimate of the residual variance when is
 nonlinear.
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